GUHRING

Technical Section

Contents

Drilling tools

4 Contents

Page

6 Technical section

Deep hole drills

- 42 Contents
- 44 Technical section

Milling tools

- 86 Contents
- 88 Technical section

Threading tools

- 106 Contents
- 108 Technical section

Reaming, countersinking & deburring tools

- 156 Contents
- 158 Technical section

Clamping systems GM 300

- 178 Contents
- 180 Technical section

Grooving tools

- 224 Contents
- 226 Technical section

Drilling tools

GIIHRING

Page

- **6** Surface treatment and coatings for drilling tools
- 10 Application recommendations for Guhring coatings
- 11 Centring and pilot drilling
- 12 Spotting strategies
- 14 Coolant pressure and volumes
- 15 Drill hole qualities
- 16 Application/Troubleshooting
- 19 Guhring tool materials
- 22 Definitions, dimensions and angles
- 23 Point geometry
- **24** Dimensions
- 33 Shank designs
- **36** Tolerances
- **37** Tapping size holes
- 40 Conversion table inch millimetre
- 41 Material abbreviations

Bright finish

Especially for the machining of wrought and cast aluminium alloys with a high silicon content, un-coated drills offer a very good machining performance. In order to counter adhesive (formation of built-up edges), these tools are optimally suited to this field of application thanks to a special geometry combined with a high surface quality in the point thinning, flute and clearance areas.

Steam tempered/nitrided surface finish

A steam tempered surface finish provides an improved corrosion protection as well as an improved tribological behaviour of the tools thanks to the oxidation of the surface area (approx. 3 to 10 µm). Nitriding the land is recommended for abrasive applications, it increases the hardness of the surface on the land and therefore improves wear resistance of the tool. However, using hard material / soft material coatings often provide better results, this type of surface treatment is becoming increasingly less important.

TiN-coating

Max. application temperature: <600° C

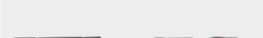
Colour: Golden yellow Structure: Single-layer Hardness: 2300 HV0.05

Introduced by Gühring at the beginning of the 1980's, TiN-coating is applied to HSS and carbide for drilling operations as a cost-efficient

general purpose coating.

FIRE/nanoFIRE-coating

Max. application temperature: <800° C


Colour: Violet Structure: Multi-layer Hardness: 3300 HV0.05

FIRE and nanoFIRE coatings contain aluminium, titanium and nitrogen. These coatings were introduced towards the end of the 1990's and are a further development of the TiN-coating. They excel thanks to increased hardness and good thermochemical resistance, they are suitable for HSS

and carbide.

Raptor-coating

Max. application temperature: < 800°C

Colour: Pale golden Structure: Multi-layer Hardness: 3300 HV0.05

The TiN/ TiAlN-multi-layer structure of Raptor is the key component for the good performance when machining steel. Thanks to the additional friction reducing top layer coating, based on zircon, the performance coud now be further extended for steels that tend to adhere during machining (i.e. ferritic,

austenitic and Duplex steels).

TiAIN-coating

Max. application temperature: <800° C

Colour: Violet

Structure: Single-layer Hardness: 3300 HV0.05

The TiAlN-coating displays similar characteristics to FIRE and nanoFire and with its single-layer structure is mostly applied in

the field of micro-precision drills.

nanoA-coating

Max. application temperature: <900° C

Colour: Blue violet

Structure: Multi-layer, nano-structured

Hardness: 3300 HV0.05

TiAIN based nanoA has proven itself in the machining of stainless steels and is suitable for drilling cast iron, nickel based alloys and cobalt chrome alloys. Thanks to its nano-layered structure the fracture growth is delayed. Furthermore, thanks to its adapted composition it possesses a higher ther-

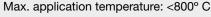
mo-chemical resistance than for example TiAIN.

Sirius-coating

Max. application temperature: < 900°C

Colour: Pale golden

Structure: Multi-layer, nano-structured


Hardness: 3400 HV0.05

Sirius, essentially based on AITiN is especially suitable for the machining of stainless steels. Thanks to the nano-structured designvit displays good hardness and toughness. The zircon containing top layer coating is to largely eliminate chemical reactions with the material and therefore

encourage chip evacuation.

Signum-coating

Colour: Bronze

Structure: Multi-layered nano-composite


Hardness: 5500 HV0.05

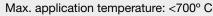
The Signum-coating belongs to the group of Nano-composites. The micro-structure features extremely fine TiAlN nano-crystals bedded into a glass-like, high temperature resistant silicon nitride matrix. This results in a high hardness especially making the Signum-coating the first choice for

hardened steels and cast materials.

Endurum-coating

Colour: Copper

Structure: Multi-layered nano-composite


Hardness: 4000 HV0.05

Endurum-coating, another coating of the Nano-composite family, this was specifically designed for the machining of carbon, free-cutting and manga-

nese alloyed steels.

Zenit-coating

Colour: Pale gold

Structure: Multi-layer, nano-structured

Hardness: 2500 HV0.05

The nano-structured Zenit-coating was specifically optimised for the machining of titanium-alloys. The special structure as well as the composition contribute to a significant reduction of tribochemical wear and therefore make it a true specialist. In parallel it also achieves good results when

drilling aluminium cast alloys with moderate silicon content.

Ice-coating

Max. application temperature: <1000° C

Colour: Metallic grey Structure: Multi-layer Hardness: 3500 HV0.05

The titanium, aluminium and chrome based Ice-coating specialises in the machining of non-ferrous metals such as, copper alloys, bronze and brass.

Carbo-coating

Max. application temperature: <500° C

Colour: Grey black Structure: Single-layer Hardness: 5000 HV0.05

The Carbo-coating is part of the DLC-coating group (DLC – diamond-like-carbon). These carbon coatings possess diamond-like characteristics. The Carbo-coating displays a very high hardness due to its composition of 100% carbon and structure (ta-C). It explains the outstanding performance when drilling non-ferrous metals such as, wrought and cast aluminium alloys (< 12% Si), copper, brass and bronze. In addition, it is suitable for plastics and wood.

Cristall-coating

Max. application temperature: <600° C

Colour: Grey black Structure: Single-layer Hardness: 8000 HV0.05

Cristall-coating is a pure crystalline diamond coating that does not lag behind natural diamond in anything. With many interesting physical properties it impresses with its extreme hardness. Therefore, the micro-crystalline Cristall-coating is exceptionally suited for the machining of highly abrasive materials such as, fibre-reinforced plastics, ceramic, graphite and cast aluminium alloys with a high silicon content (> 12%). This coating can only be applied on special carbide grades for technical process reasons.

		Drilling Carbide HSS					
	Carl	Carbide					
	conventional	MQL					
C-steels,	Endurum	Endurum	Fire				
Free-cutting steels,	Raptor	Raptor	-				
Mn-steels	Fire	Fire	-				
	Fire	Fire	Fire				
Steel, low-alloyed	Endurum	Endurum	TiN				
	Raptor	Raptor					
	Fire	Fire	Fire				
Steel, alloyed	Signum	Signum	TiN				
· •	nanoA	nanoA					
	Signum	Signum	-				
Steel, hardened <55 HRC	Fire	Fire	_				
	TiAIN	TiAIN	_				
	Signum	Signum	_				
Steel, hardened 55-65 HRC	Fire	Fire	_				
Steet, Hardened 33-03 PRC			-				
	TiAIN	TiAIN	-				
Steel, stainless and	nanoA	nanoA	Sirius				
acid resistant	Sirius	Sirius	Fire				
	Endurum	Endurum	TiN				
	Signum	Signum	Fire				
Cast iron	Fire	Fire	-				
	nanoA	nanoA	-				
	bright	bright	bright				
Aluminium wrought alloys	Carbo	Carbo	Carbo				
	Cristall	Cristall	-				
	bright	bright	bright				
Aluminium cast alloys (< 12% silicon)	Zenit	Zenit	Zenit				
	Carbo	Carbo	Carbo				
	Cristall	Cristall	-				
Aluminium cast alloys (≥ 12% silicon)	_	-	_				
	_	_	_				
	nanoA	nanoA	Fire				
Nickel based alloys	Signum	Signum	-				
(i.e. Inconel)	Fire	Fire					
	Zenit	Zenit	Fire				
Titanium / titanium alloys		nanoA	FIIE				
	nanoA		T:NI				
Copper / bronze / brass	ICE Coulo a	ICE	TiN				
	Carbo	Carbo	-				
_	nanoA	nanoA	-				
Cobalt chrome alloys	Signum	Signum	-				
	Fire	Fire	-				
Precious metals	nanoA	nanoA	-				
Ceramic	Cristall	Cristall	-				
Plastics, non-reinforced	Carbo	-	-				
Plastics, fibre-reinforced	Cristall	Cristall	-				
riasuos, iibre-reiliibroeu	Signum	Signum	-				

Note:

The overview shows the general application recommendations for Gühring coatings. Prioritisation is from top to bottom.

10

Centring and pilot drilling

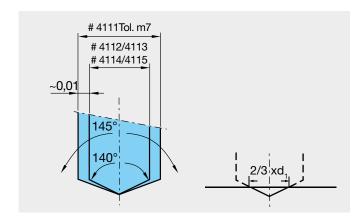
Centring and pilot drilling for HT 800

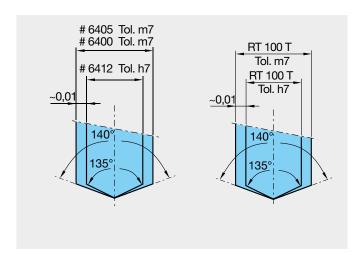
Generally we recommend centring/pilot drilling for HT 800 with drilling depths above 5xD.

When centring, the drilling diameter should be approximately 2/3 of the hole diameter to be produced.

With pilot drilling we recommend a drilling depth of 1xD. In addition, the point angle as well as the diameter of the pilot drill should be larger than the point angle and the diameter of the following drill.

To ensure this, we recommend the application of the adapted pilot drilling inserts art. no 4111 with 145° point angle and m7 diameter tolerance in an extra short, rigid holder art. no. 4105.




When applying solid carbide drills for drilling depths 7xD to 12xD we recommend centring or the production of a pilot hole with a depth of 1xD to 2xD.

With drilling depths larger than 12xD a pilot hole with a depth of 1xD to 2xD is imperative.

With pilot drilling for the Exclusive Line micro-precision drill with 15xD (art. no. 6412) we recommend the application of Exclusive Line micro-precision drill 4xD without internal cooling (art. no. 6400) or 5xD with internal cooling (art. no. 6405), as they are optimally adapted regarding point angle and diameter tolerance.

When pilot drilling for deep hole drills eg. type RT100T, a Ratio drill type RT100U with internal cooling, 3xD (e.g. art. no. 2477) can be applied, as it is optimally suited regarding point angle and diameter tolerance.

Centring and pilot drilling for HSS

Centring with drill lengths to DIN 340

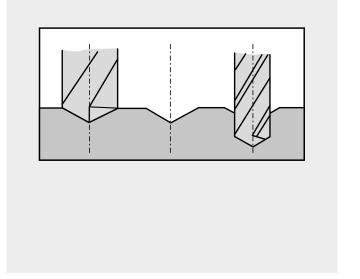
When using long series drills (DIN340) in HSS/HSCO, we recommend spot drilling with a spotting diameter of 0.5 to 0.7xD (D = drill diameter). HSS NC spotting drills are optimally suited for this process. Detailed information regarding NC spotting drills can be found in the NC spot drilling section.

Pilot drilling with drill lengths to DIN 1869

When applying extra length HSS/HSCO drills to DIN 1869 we recommend the production of a pilot hole with a depth of 1xD to 2xD.

Stub drills type GV 120 to DIN 1897 are optimally suited.

GUHRING 11

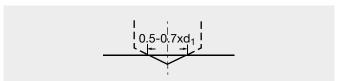

NC spotting drills

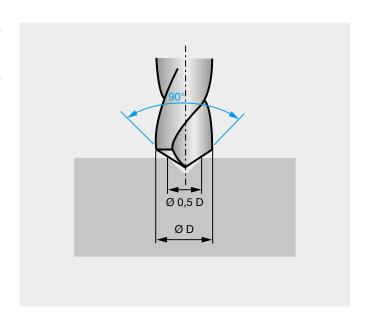
NC spotting drills

When producing accurately positioned holes, holes with close diameter tolerances, deep holes or generally with unfavourably shaped workpieces (round, rough. etc.) it's recommended to use a NC spotting drill. This ensures the following drill, drills accurately and prevents the drill from running off.

NC spotting drills can also be used to produce chamfers or countersinks (when using a spot drill with a larger diameter than the actual hole) and centring in one operation.

NC spotting drills are designed with a very short flute length and without body clearance to ensure a very rigid design and therefore accurately positioned spotting. Due to the design, NC spot drills are only suitable for spotting, drilling depths must not exceed the length of the point geometry.

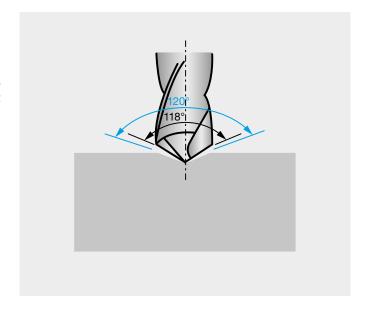

Selecting an NC spotting drill


Ideally, the spotting diameter should be chosen between 0.5 to 0.7 xD.

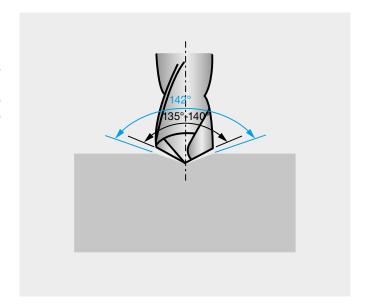
90° NC spotting drills

NC spotting drills with a 90° point angle are ideally suited for spotting if the following HSS/HSCO drills have a relatively large chisel edge. This ensures that the following HSS/HSCO drill drills with the cutting lip first and is guided by the most stable points of the cutting edge.

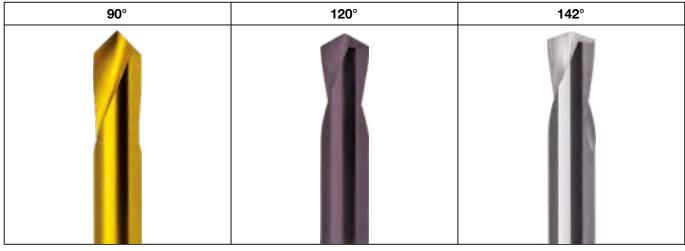
In addition, NC spotting drills with a 90° point angle are used to produce a 90° countersink and centre in one operation if the spotting diameter is larger than the actual hole diameter.



NC spotting drills


120° NC-spotting drills

NC-spotting drills with a 120° point angle are specially suited for spotting operations if the actual hole is subsequently produced with HSS/HSCO drills with a 118° point angle. This ensures the following HSS/HSCO drill spots with the point first and is well guided.



142° NC-spotting drills

NC-spotting drills with 142° point angle are specially suited for spotting operations if the actual hole is subsequently produced with carbide drills with a 135° - 140° point angle. This ensures the following carbide drill spots with the point first, centers and is well guided. If the cutting corners of the carbide drill meet the material to be machined before the point, there is the risk of corner crumbling with carbide drills.

NC spotting drills

GUHRING 13

Coolant pressure and volumes Ratio drills

The illustrated optimum, good and minimum required coolant volume apply only to spiral-fluted Ratio drills type RT 100. In contrast to the pressure, which is a feature of the machine tool; the cooling system fitted to it and also the possibility of leakage, volume does not depend on the machine (fig. 1). The pressure figures given are therefore recommendations which serve only as guidelines. Ratio drills type RT 80 with central coolant duct are subject to different standards (fig. 2). The diagrams shown are for Ratio drills in their most important application, machining of steel. But they are also guidelines for the machining of other materials, primarily because the highest coolant pressures are constantly required for the machining of steel. The effects of cooling using straight-fluted Ratio drills type RT 150 is particularly sensitive and is clearly demonstrated in the examples for particular workpiece materials. For example, the loss in tool life through low pressures when machining grey cast iron is considerably higher than when machining AlSi

alloys. But this is only the case when the AlSi alloy is short-chipping! The absolute necessary minimum pressure or good pressure should, when machining cast iron, be generally a little higher than for AlSi machining (figures 3 and 4).

The recommended values are to be used only for drilling depths of up to approx. 5 x D. Deeper holes should be produced with tools having internal coolant ducts, as for example RT 150 GN, otherwise the production of deeper holes (depending on the material) becomes uneconomical.

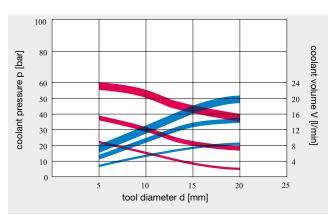


fig. 1: Required coolant pressures and volumes for RT 100 Ratio drills with internal spiral coolant ducts.

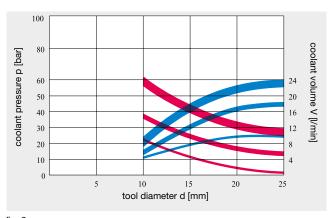


fig. 2: Required coolant pressures and volumes for RT 80 Ratio drills with central internal coolant duct.

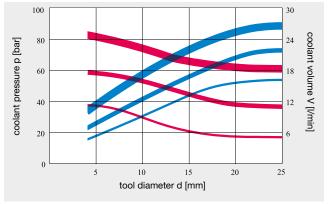


fig. 3: Required coolant pressures and volumes for straight-fluted Ratio drill type 150 GG when machining cast iron.

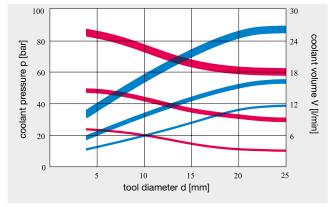
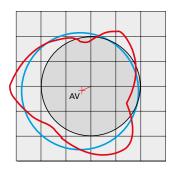
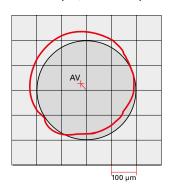


fig. 4: Required coolant pressures and volumes for straight-fluted Ratio drill type 150 GG when machining AlSi7.


Typical hole quality characteristics

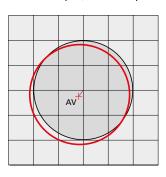
1. in 42CrMo4V, Ø 14.5 mm

HSS drills, type N Gühring no. 651 ■


vc = 25 m/min f = 0.25 mm/rev. +Rmax = 131.8 μ m -Rmax = -49.1 μ m actual D = 14.566 mm dRmax = 103.5 μ m AV = 49.2 μ m

Ra = 2.6 μ m, Rz = 6.8 μ m **IT12**

Ratio drills, type RT 80 Gühring no. 1171 ■


vc = 70 m/min f = 0.25 mm/rev. +Rmax = 42.7 μ m -Rmax = -29.6 μ m actual D = 14.515 mm dRmax = 12.9 μ m AV = 35.3 μ m Ra = 1.4 μ m, Rz = 4.31 μ m

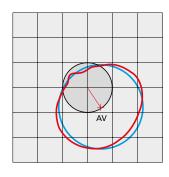
Ratio drills, type RT 100 Gühring no. 1181

vc = 70 m/min f = 0.25 mm/rev. +Rmax = 26.7 μm -Rmax = -17.2 μm actual D = 14.509 mm dRmax = 5.2 μm AV = 22.8 μm

Ra = $1.04 \mu m$, Rz = $3.2 \mu m$ **IT8**

The overall total of the maximum positive and negative deviations is the sum of the total run-out in relation to the black circle as measured on standard instruments (dRmax). The red lines at the hole centres indicate the direction and amplitude of the displacements AV (Axis Shifting) of the produced hole from the true centre point. The parameter showing the largest deviation is decisive for the IT quality class of the hole in relation to the tool diameter.

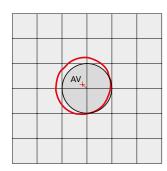
The black circle in the diagram represents the nominal hole diameter which the tool should ideally produce. The red circle indicates the form actually produced.


The mean value of the radius of the red circle, i.e. the average diameter, is shown by the blue circle. (with our Ratio drills the average diameter is practically identical to the actual diameter produced).

2. in GGG40, Ø 10.0 mm

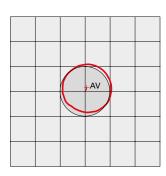
HSS drills, type N Gühring no. 651 ■

vc = 30 m/min f = 0.2 mm/rev. actual D = 10.077 mm +Rmax = 106 μ m -Rmax = -28 μ m dRmax = 42 μ m AV = 68.5 μ m


Ra = $3.7 \mu m$, Rz = $17.2 \mu m$ **IT12**

Ratio drills, type RT 100 Gühring no. 1181 ■

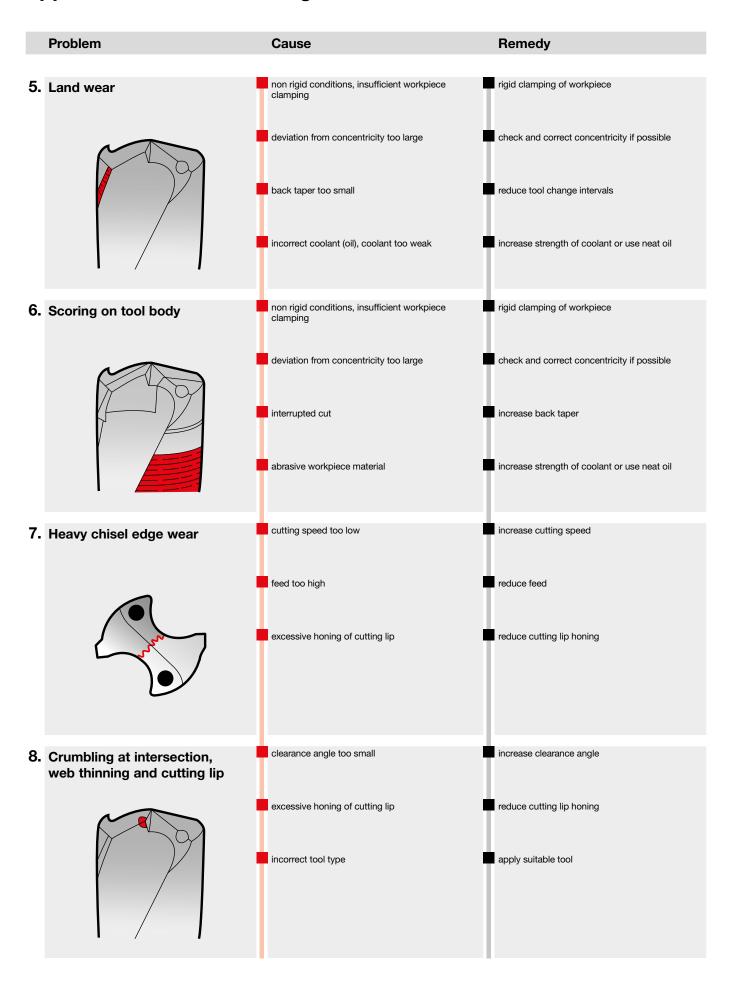
vc = 90 m/min f = 0.3 mm/rev. actual D = 10.027 mm +Rmax = 34 μm -Rmax = -9.2 μm dRmax = 6.5 μm AV = 22.5 μm


 $Ra = 2.2 \mu m, Rz = 11.5 \mu m$ **IT9**

Ratio drills, type RT 150 GG Gühring no. 768

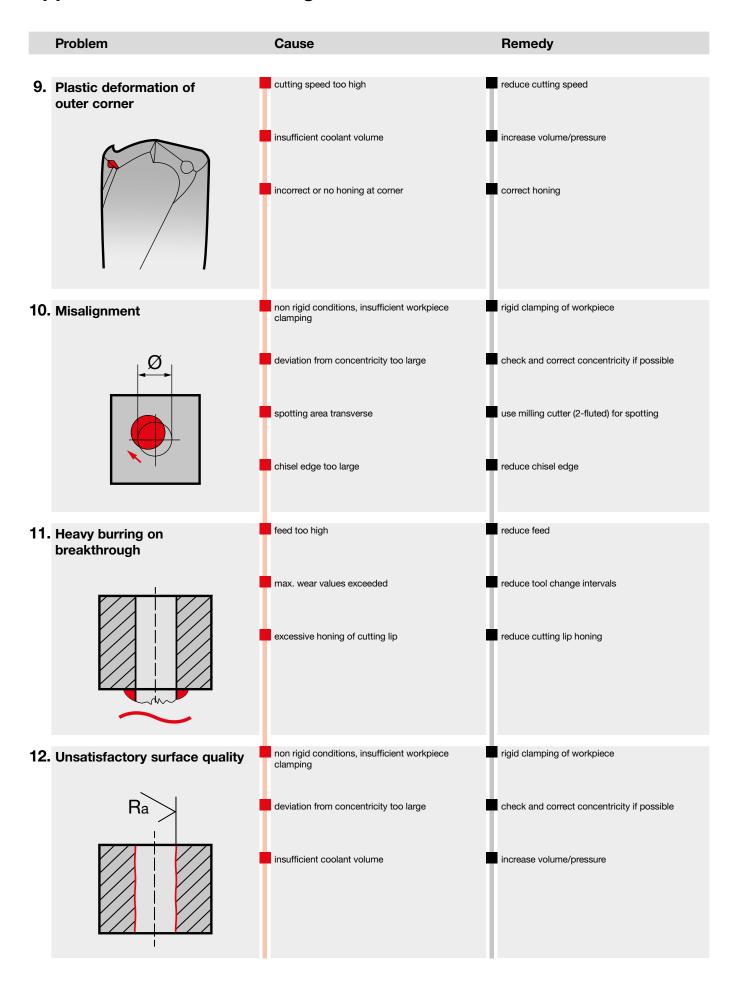
vc = 130 m/min f = 0.2 mm/rev. actual D = 9.994 mm +Rmax = 11.5 µm -Rmax = -18 µm dRmax = 5 µm AV = 14 µm

Ra = 1.99 μ m, Rz = 11.2 μ m **IT8**



Application/Troubleshooting

Problem	Cause	Remedy
1. Cutting edge build up	low cutting speed	increase cutting speed
	excessive honing of cutting lip bright finish cutting lip	reduce cutting lip honing have tool coated
2. Crumbling of outer corners	non rigid conditions, insufficient workpiece clamping	rigid clamping of workpiece
	deviation from concentricity too large	check and correct concentricity if possible
	interrupted cut	reduce feed
3. Heavy wear at flank	cutting speed too high	reduce cutting speed
	feed too low	increase feed
	clearance angle too small	increase clearance angle
4. Crumbling on cutting lips	non rigid conditions, insufficient workpiece clamping	rigid clamping of workpiece
	interrupted cut	reduce feed
	max. wear values exceeded	reduce tool change intervals
	incorrect tool type	apply suitable tool)


Application/Troubleshooting

GUHRING 17

Application/Troubleshooting

High speed steels

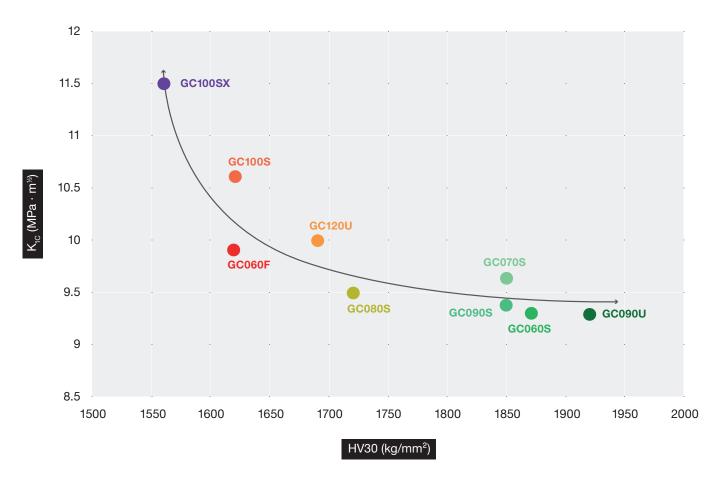
We only produce tools in the highest quality, carefully selected high speed grades. Depending on the alloying component, the tools have specific properties suited to the application case:

Tungsten, molybdenum: Increases the temper resistance and the wear resistance.

Vanadium: Increases the wear resistance.

Cobalt: Increases the wear resistance, increases the thermal hardness.

Gühring description	Туре	Field of application, properties			
HSS	Conventional high speed steel	Standard tool material for universal applications			
HSCO / HSS-E Cobalt-alloyed high speed steel		Tool material with high thermal hardness for increased demands, especially suitable for higher machining temperatures or unfavourable cooling.			
M42	8% cobalt-alloyed high speed steel	Tool material with increased thermal resistance			
HSS-E	070 cobait-alloyed riigii speed steel	and hardness, suitable for machining difficult-to-machine materials.			
HSS-E-PM	Powder metallurgically produced cobalt-alloyed high speed steel	Tool material with a very dense and uniform structure. High hardness and thermal resistance, high wear resistance and cutting edge stability.			


The most important carbide grades for Gühring tools

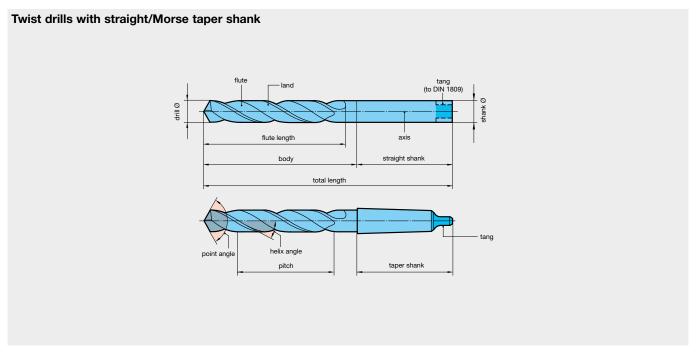
The following table lists the most important carbides that are available from Gühring ex-stock for general applications. Further carbide grades are available on request and detailed information can be found at www.guehring-carbide.de

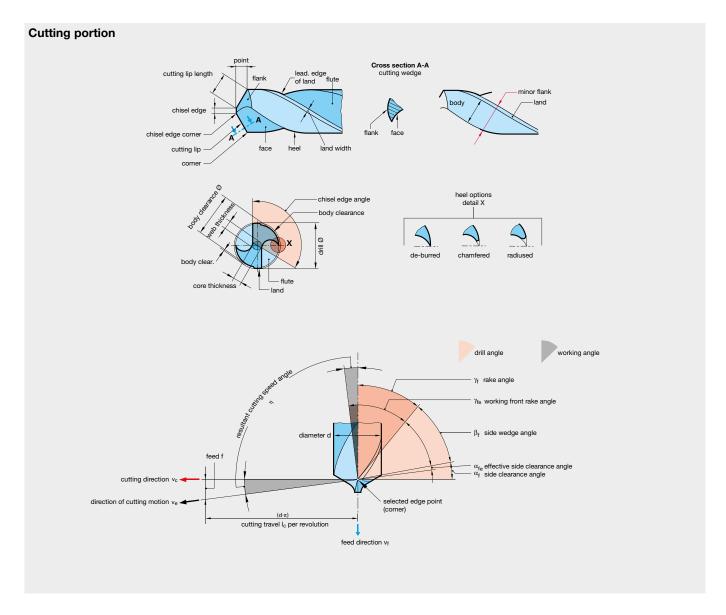
In more than 80% of applications known to Gühring, the results of GC100SX carbide grade tools together with a specially adapted coating could not be surpassed by any other carbide grades, including coated tools. This and the availability of the material ex-stock simplify tool selection immensely. For further information regarding the application of other carbide grades please contact our technical engineers.

			\bigoplus	\Longrightarrow		\bigoplus				\Longrightarrow
Туре		GC100SX	GC060F	GC100S	GC120U	GC080S	GC070S	GC090S	GC060S	GC090U
Classification		K20-K40	K15-K20	K20-K40	K20-K30	K20-K30	K10	K10	K05-K10	K05-K10
Co	%	10.0	6.0	10.0	12.0	8.0	7.0	9.0	6.0	9.0
WC including doping	%	90.0	94.0	90.0	88.0	92.0	93.0	91.0	94.0	91.0
Hardness HV30 (±50)	kg/mm ²	1560	1620	1620	1690	1720	1850	1850	1870	1920
Fracture toughness K _{IC}	MPa·m½	11.5	9.9	10.6	10.0	9.5	9.6	9.4	9.3	9.3
Bending strength	N/mm ²	3700	3200	4100	4000	3800	3500	3800	3900	3800
Medium grain size	μm	0.5-0.8	0.8-1.3	0.5-0.8	0.2-0.5	0.5-0.8	0.5-0.8	0.5-0.8	0.5-0.8	0.2-0.5

Due to the dependence of the values measured for the critical intensity factor K_{IC} on the sample geometry and sample preparation, the measured values are only comparable with values determined under the same conditions. Valid porosity for all grades: A <02 / B 00 / C 00.

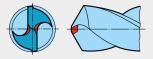
Superhard tool materials

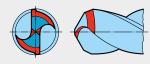

It is not only the extreme hardness of superhard tool materials but also their high heat-resistance which enables highest cutting rates and increased productivity. PCD (Poly-Crystalline Diamond) stands for maximum wear resistance. PCD's main field of application is the machining of aluminium and fibre


composites. PcBN (Polycrystalline cubic Boron Nitride) finds application in ferrous materials. To unfold the full potential of these tool materials, the application on the most rigid of machine tools is recommended

Gühring description	Classification	Range of application	Average grain size	Diamond content
	Fine grain	Aluminium and AlSi-alloys <10%Si, magnesium alloys, brass, copper, bronze, excellent cutting edge quality, high abrasion resistance, excellent surface qualities.	2-4 µm	> 90% PCD
PCD	Medium grain	Universal grade (general finishing applications) AlSi-alloys <14%Si, copper alloys, graphite and graphite composite materials, fibre composite plastics, unsintered ceramic and carbide (<15% binding metal content) excellent resistance, good surface qualities.	5-10 μm	approx. 92% PCD
POD	Coarse grain	Roughing applications AlSi-alloys >14%Si and other abrasive machining applications, MMC, sintered ceramic and carbide (<15% binding metal content, extreme abrasion resistance, high shock resistance, long tool life with acceptable surface quality.	>25 µm	approx. 94% PCD
	Mixed grain	Abrasive machining applications (i.e.: >14% AlSi-alloys, MMC, fibre composite plastics) highest wear resistance, excellent shock resistance, extreme abrasion resistance with good edge roughness, long tool life with good surface quality.	4 μm+ 25 μm	approx. 95% PCD
PcBN 10	Low CBN-content with carbide base	For finish machining of case hardened, hardened heat-treatable and tool steels, suitable for continuous and medium to heavily interrupted cutting with ap smaller 0.3 mm. High wear resistance, resistance to impact, temperature resistance, toughness.	<1-4 μm	40-65% CBN
PcBN 20	High CBN-content with carbide base	For the machining of perlitic grey cast iron (> 45 HRC), PM-steels, chilled cast iron. Application in continuous and interrupted cutting with ap of 0.5-1.5 mm. High wear resistance, resistance to impact.	2-3 µm	70-90% CBN
PcBN 30	High CBN-content without carbide base	Massive PcBN tool material suitable for roughing operations. Perlitic grey cast iron, hard casting, hardened steels. For application in clamping holders, drilling and boring tools, milling heads with jaw clamping. High wear resistance, resistance to impact.	2-20 μm	70-87% CBN

Definitions, dimensions and angles DIN ISO 5419 (extract; edition 06/98)

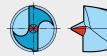




Special point geometry and manufacturing tolerances

Special point geometry to DIN 1412 (extract; edition 03/01)

Form A
Thinned
chisel edge



Form D
Point ground for cast iron

Form B
Thinned chisel edge with corrected cutting lips

Form E Brad point (center point)

Form C Split point

Twist drill manufacturing tolerances to DIN ISO 286, part 2

diameter (nominal size)	tolerance range µm					
up to and incl. mm	h8	h7				
0.38 0.60	10	7				
0.95	12	8				
3.00	14	10				
6.00	18	12				
10.00	22	15				
18.00	27	18				
30.00	33	21				
50.00	39	25				
80.00	46	30				
120.00	54	35				

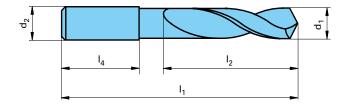
^{*} If you need tolerances other than ISO h8 please let us know. Additional charges for closer diameter tolerance see additional charges at the end of chapter Drilling Tools.

Reference to other relevant standards

DIN 228	Part 1 machine tapers; Morse tapers and metric tapers, taper shank
DIN 1414-1	Directions for design and use for high speed steel twist drills
DIN 6580	Definitions of the metal-cutting industry; motions and geometry of the cutting process
DIN 6581	Definitions of the metal-cutting industry; Cutting portion reference systems and angles

The standard descriptions above are given with the permission from the German Standards Institute (Deutsches Institut für Normung). The most recent editions of the standard sheets apply and are available in DIN A 4 format from Beuth-Verlag GmbH, D-10787 Berlin.

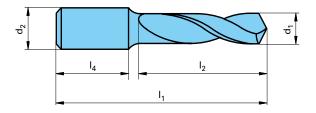
23


GUHRING

Carbide twist drills (Ratio drills)

Carbide twist drills (Ratio drills) DIN 6537

Applies to solid carbide twist drills with 2 or 3 cutting edges and straight shank to DIN 6535



Dimensions in mm

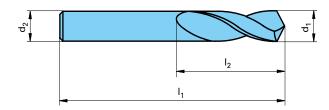
		Ratio drills for 3 x D		Ratio for 5		
nom. Ø-range up to d1m7	shank Ø d2h6	overall length	max. flute length l2	overall length	max. flute length l2	shank length I4
2.93.75	6	62	20	66	28	36
4.75	6	66	24	74	36	36
6.00	6	66	28	82	44	36
7.00	8	79	34	91	53	36
8.00	8	79	41	91	53	36
10.00	10	89	47	103	61	40
12.00	12	102	55	118	71	45
14.00	14	107	60	124	77	45
16.00	16	115	65	133	83	48
18.00	18	123	73	143	93	48
20.00	20	131	79	153	101	50

Carbide twist drills (Ratio drills) DIN 6538

Applies to twist drills with brazed carbide tip or head with reinforced straight shank (steel) to DIN 6535. The brazed head can be a part or the complete cutting portion.

Dimensions in mm

		Ratio drills for 3 x D		Ratio for 5		Ratio for 7		
nom. Ø-range up to d1h7	shank Ø d2h6	overall length	max. flute length I2	overall length	max. flute length I2	overall length	max. flute length I2	shank length l4
9.512.0	16	103	51	127	75	151	99	48
14.0	16	111	59	139	87	167	115	48
16.0	20	122	68	154	100	186	132	50
18.0	20	130	76	166	112	202	148	50
20.0	25	144	84	184	124	224	164	56
22.0	25	153	93	197	137	241	181	56
24.0	25	161	101	209	149	257	197	56
26.0	32	174	110	226	162	278	214	60
28.0	32	182	118	238	174	294	230	60
30.0	32	190	126	250	186	310	246	60


24 GÜHR**ing**

Carbide twist drills (Ratio drills)

Carbide twist drills (Ratio drills) DIN 6539

Applies to solid carbide twist drills with parallel shank, i.e. equal nom. drill and shank diameter.

Dimensions in mm

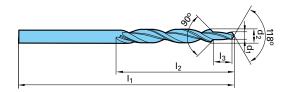
nom. Ø-range up to (= shank Ø d2)	overall length	flute length
d1	I1	12
1.902.12	38	12
2.36	40	13
2.65	43	14
3.00	46	16
3.35	49	18
3.75	52	20
4.25	55	22
4.75	58	24
5.30	62	26
6.00	66	28
6.70	70	31
7.50	74	34
8.00	79	37
8.50	79	37
9.50	84	40

nom. Ø-range up to	overall length	flute length
(= shank Ø d2) d1	l1	12
_		
10.00	89	43
10.60	89	43
11.80	95	47
12.00	102	51
13.20	102	51
14.00	107	54
15.00	111	56
16.00	115	58
17.00	119	60
18.00	123	62
19.00	127	64
20.00	131	66

Straight shank twist drills

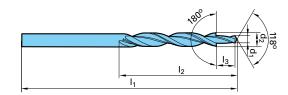
mm		DIN	338	DIN	I 339	DIN	340	DIN	1897	DIN 1869 Extra length twist drills				os 2	
The color The										seri	es 1	ser	es 2	seri	es 3
mm	to	total length	flute length	total length	flute length	total length	flute length	total length	flute length						
0.38 19 3 0.38 19 4 19 1.5 19 2.5 0.68 20 5 0.50 0.51 0.51 0.50		m	ım	m	nm	m	ım	m		m	m	m		m	
0.38	≤ 0.24	19	2.5					19	1.5						
0.48															
0.60						30*	10*								
0.67															
0.75	0.60	24	7	32*	15*	35*	15*	21	3.5						
0.85 30 10 42" 22" 48" 25" 24 5 5 5 5 5 5 5 5 5															
0.95		1													
1.06															
1.32 38 16 52 30 66 41 30 8 15.5 75. 1.50 40 18 55 33 70 45 32 9 115. 75. 1.90 48 22 62 88 85 76 50 34 10 115. 75. 1.90 48 22 62 88 80 53 36 11 120. 80. 2.12 49 24 66 41 85 56 38 12 125 85 160. 1.26 57 30 74 47 95 62 43 14 140 95 180. 1.26 57 30 74 47 95 62 43 14 140 95 180. 1.30 61 33 79 51 100 66 46 16 150 100 190 130 240. 1.33 5 65 36 84 55 106 69 49 18 155 105 200 135 250. 1.3.75 70 39 91 60 112 73 52 20 165 115 210 145 265 11 1.3.76 70 39 91 60 112 73 52 20 165 115 210 145 265 11 1.3.75 75 80 47 102 69 126 82 58 24 185 125 235 160 295 20 1.3.00 86 52 108 74 132 87 62 26 195 135 245 170 315 25 1.5.00 86 52 108 74 132 87 62 26 195 135 245 170 315 25 1.5.00 86 133 93 156 102 74 34 225 156 290 200 370 221 1.5.00 109 69 133 93 156 102 74 34 225 155 290 200 370 221 1.5.00 109 69 133 93 156 102 74 34 225 155 290 200 370 221 1.5.00 169 114 202 147 155 115 84 40 250 175 320 220 40 105 110 184 134 205 134 102 51 125 205 180 235 240 1.5.00 169 114 202 147 220 144 111 56 120 175 300 240 300 240 1.5.00 169 114 202 147 220 144 111 56 110 176 153 150 150 200 370 221 1.5.00 169 114 202 147 220 144 111 56 120 175 250 200 370 221 1.5.00 169 114 202 147 220 144 111 56 120 175 250 250 250 375 260 480 330 22 240 240 240 241 153 234 170 247 162 241 140 177 54 158 123 68 240 240 250 175 320 220 410 23 11.00 165 109 194 115 58 125 205 365 250 480 330 22 240 240 241 153 234 170 153 154 119 60 224 177 2254 166 131 66 8 22 26 185 340 235 430 235 130 240 140 242 177 226 146 131 66 8 224 185 144 170 220 144 111 56 180 199 115 30 226 165 241 153 234 170 175 115 84 40 250 175 320 220 410 241 153 275 180 146 72 220 140 241 153 275 180 146 72 220 140 241 153 275 180 146 72 220 140 241 153 275 180 146 72 220 140 241 153 275 180 146 72 220 140 241 153 275 180 146 72 220 140 145 241 140 177 54 158 123 68 245 170 175 175 175 175 175 175 175 175 175 175	1	•		ł											
1.50															
1,70															
1.90		•		ł						115*	75*				
2.12															
2.65	1	•		ł		1				1		160*	110*	205*	135*
3.00 61 33 79 51 100 66 46 16 150 100 190 130 240° 10 3.35 65 36 84 55 106 69 49 18 155 105 200 135 250° 11 3.75 70 39 91 60 112 73 52 20 165 115 210 145 265 14 4.25 75 43 96 64 119 78 55 22 175 120 220 150 280 11 4.75 80 47 102 69 126 82 58 24 185 125 235 160 295 26 5.30 86 52 108 74 132 87 62 26 195 135 245 170 315 2 6.00 93 57 116 80 139 91 66 28 205 140 260 180 330 22 6.70 101 63 124 86 148 97 70 31 215 150 275 190 350 27 7.50 109 69 133 93 156 102 74 34 225 155 290 200 370 22 8.50 117 75 142 100 165 109 79 37 240 165 305 210 390 21 10.60 133 87 162 116 184 121 89 43 265 185 340 235 430 21 11.80 142 94 173 125 195 128 95 47 280° 195° 365° 250° 455° 3 11.80 142 94 173 125 195 128 95 47 280° 195° 365° 250° 455° 3 11.80 142 100 108 194 142 214 140 107 54 15.00 169 114 202 147 220 144 111 58 123 62 11.60 188 135 234 171 247 162 127 64 20.00 205 140 224 177 254 166 131 66 21.20 2240 205 140 226 165 241 158 123 62 22.40 288 176 141 70 23.60 25.00 205 140 242 177 254 166 131 66 21.20 22.40 268 176 141 70 23.60 25.00 205 140 242 177 254 166 131 66 21.20 22.40 268 176 141 70 23.60 25.00 205 140 242 177 254 166 131 66 21.20 22.40 268 176 141 70 23.60 25.00 205 140 242 177 254 166 131 66 22.61 171 136 68 28.00 33.50 3															145*
3.35 65 36 84 55 106 69 49 18 155 105 200 135 250° 13 3.75 70 39 91 60 112 73 52 20 165 115 210 145 265 14 4.25 75 43 96 64 119 78 55 22 175 120 220 150 280 15 4.75 80 47 102 69 126 82 58 24 185 125 235 160 295 26 5.30 86 52 108 74 132 87 62 26 195 135 245 170 315 26 6.00 93 57 116 80 139 91 66 28 205 140 260 180 330 22 6.70 101 63 124 86 148 97 70 31 215 150 275 190 350 25 8.50 117 75 142 100 165 109 79 37 240 165 305 210 390 22 9.50 125 81 151 107 175 115 84 40 250 175 320 220 410 26 11.80 133 87 162 116 184 121 89 43 265 185 340 235 430 235 13.20 151 101 184 134 205 134 102 51 295* 205* 375* 260* 480* 38 11.00 160 108 194 142 214 140 107 54 115.00 169 114 202 147 220 144 111 56 115.00 178 120 211 153 227 149 115 58 115.00 198 135 234 171 247 162 127 64 20.00 205 140 242 177 254 166 131 68 268 176 141 70 23.60 22.40 205 140 242 177 254 166 131 68 268 176 141 70 23.60 22.40 235 305 241 158 159 235 150 140 177 175 150 150 150 150 150 150 150 150 150 15												1			150*
3.75				1											160* 170*
4.75 80 47 102 69 126 82 58 24 185 125 235 160 295 26 5.30 86 52 108 74 132 87 62 26 195 135 245 170 315 2 6.00 93 57 116 80 139 91 66 28 205 140 260 180 330 22 6.70 101 63 124 86 148 97 70 31 215 150 275 190 350 22 7.50 109 69 133 93 156 102 74 34 225 155 290 200 370 22 8.50 117 75 142 100 165 109 79 37 240 165 305 210 390 22 9.50 128 81															180
5.30 86 52 108 74 132 87 62 26 195 135 245 170 315 2 6.00 93 57 116 80 139 91 66 28 205 140 260 180 330 22 6.70 101 63 124 86 148 97 70 31 215 150 275 190 350 22 7.50 109 69 133 93 156 102 74 34 225 155 290 200 370 20 8.50 117 75 142 100 165 109 79 37 240 165 305 210 390 20 9.50 125 81 151 107 175 115 84 40 250 175 320 220 410 22 1180 140 285 14	1		43							175		1			190
6.00 93 57 116 80 139 91 66 28 205 140 260 180 330 22 6.70 101 63 124 86 148 97 70 31 215 150 275 190 350 22 7.50 109 69 133 93 156 102 74 34 225 155 290 200 370 26 8.50 117 75 142 100 165 109 79 37 240 165 305 210 390 26 9.50 125 81 151 107 175 115 84 40 250 175 320 220 410 26 11.80 133 87 162 116 184 121 89 43 265 185 340 235 430 23 11.80 142 94 173 125 195 128 95 47 280 195 365 250 455 3 13.20 151 101 184 134 205 134 102 51 295 205 375 260 455 3 14.00 160 108 194 142 214 140 107 54 15.00 169 114 202 147 220 144 111 56 16.00 178 120 211 153 227 149 115 58 17.00 184 125 218 159 235 154 119 60 18.00 191 130 226 165 241 158 123 62 19.00 205 140 242 177 254 166 131 66 21.20 22.40 22.40 23.60 205 140 242 177 254 166 131 66 22.40 22.50 205 140 242 177 254 166 131 66 25.00 26.50 290 190 156 78 28.00 30.00 31.50 30.00 31.50 30.50 37.50 36.50 37.5															200
6.70		1		ł								1			210
7.50 109 69 133 93 156 102 74 34 225 155 290 200 370 28 8.50 117 75 142 100 165 109 79 37 240 165 305 210 390 28 9.50 125 81 151 107 175 115 84 40 250 175 320 220 410 28 10.60 133 87 162 116 184 121 89 43 265 185 340 235 430 28 11.80 142 94 173 125 195 128 95 47 280° 195° 365° 250° 455° 33 13.20 151 101 184 134 205 134 102 51 295° 205° 375° 260° 480° 33 15.00 160 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>225 235</td></t<>															225 235
8.50 117 75 142 100 165 109 79 37 240 165 305 210 390 26 9.50 125 81 151 107 175 115 84 40 250 175 320 220 410 21 10.60 133 87 162 116 184 121 89 43 265 185 340 235 430 28 11.80 142 94 173 125 195 128 95 47 280° 195° 365° 250° 455° 3 13.20 151 101 184 134 205 134 102 51 295° 205° 375° 260° 480° 33° 14.00 160 108 194 142 214 140 107 54 151 295° 205° 375° 260° 480° 33° 430°															250
10.60	1			1								1		1	265
11.80 142 94 173 125 195 128 95 47 280* 195* 365* 250* 455* 3 13.20 151 101 184 134 205 134 102 51 295* 205* 375* 260* 480* 33 14.00 160 108 194 142 214 140 107 54 15.00 169 114 202 147 220 144 111 56 16.00 178 120 211 153 227 149 115 58 17.00 184 125 218 159 235 154 119 60 18.00 191 130 226 165 241 158 123 62 19.00 198 135 234 171 247 162 127 64 22.40 22.40 261 171 136 68 22.40 23.60 268 176 141 70															280
13.20															295
14.00 160 108 194 142 214 140 107 54 15.00 169 114 202 147 220 144 111 56 16.00 178 120 211 153 227 149 115 58 17.00 184 125 218 159 235 154 119 60 18.00 191 130 226 165 241 158 123 62 19.00 198 135 234 171 247 162 127 64 20.00 205 140 242 177 254 166 131 66 21.20 205 140 242 177 254 166 131 66 22.40 20 141 70 <				1											310* 330*
15.00 169 114 202 147 220 144 111 56 16.00 178 120 211 153 227 149 115 58 17.00 184 125 218 159 235 154 119 60 18.00 191 130 226 165 241 158 123 62 19.00 198 135 234 171 247 162 127 64 20.00 205 140 242 177 254 166 131 66 21.20 268 176 141 70 23.60 275 180 146 72 25.00 282 185 151 75 26.50 290 190 156 78 28.00 307 201 168 84 31.50 316 207 174 87 33.50 35.50 180 90 35.50 186 93 37.50 180 90										233	200	070	200	100	000
17.00 184 125 218 159 235 154 119 60 18.00 191 130 226 165 241 158 123 62 19.00 198 135 234 171 247 162 127 64 20.00 205 140 242 177 254 166 131 66 21.20 261 171 136 68 22.40 268 176 141 70 23.60 275 180 146 72 25.00 282 185 151 75 26.50 290 190 156 78 28.00 307 201 168 84 31.50 316 207 174 87 33.50 180 90 35.50 186 93 37.50 186 93 193 96	1	1	114	i e		1	144	i	56						
18.00 191 130 226 165 241 158 123 62 19.00 198 135 234 171 247 162 127 64 20.00 205 140 242 177 254 166 131 66 21.20 261 171 136 68 22.40 268 176 141 70 23.60 275 180 146 72 25.00 282 185 151 75 26.50 290 190 156 78 28.00 307 201 168 84 31.50 316 207 174 87 33.50 180 90 35.50 186 93 37.50 186 93 193 96															
19.00 198 135 234 171 247 162 127 64 20.00 205 140 242 177 254 166 131 66 21.20 261 171 136 68 22.40 268 176 141 70 23.60 275 180 146 72 25.00 282 185 151 75 26.50 290 190 156 78 28.00 307 201 168 84 31.50 316 207 174 87 33.50 180 90 35.50 186 93 37.50 180 90 37.50 180 90 37.50 180 90 37.50 180 90 38.00 186 93 39.00 193 96															
20.00 205 140 242 177 254 166 131 66 21.20 22.40 261 171 136 68 22.40 268 176 141 70 23.60 275 180 146 72 25.00 282 185 151 75 26.50 290 190 156 78 28.00 298 195 162 81 30.00 307 201 168 84 31.50 316 207 174 87 33.50 180 90 35.50 186 93 37.50 186 93 193 96															
22.40 268 176 141 70 23.60 275 180 146 72 25.00 282 185 151 75 26.50 290 190 156 78 28.00 298 195 162 81 30.00 307 201 168 84 31.50 316 207 174 87 33.50 180 90 35.50 186 93 37.50 193 96															
23.60 275 180 146 72 25.00 282 185 151 75 26.50 290 190 156 78 28.00 298 195 162 81 30.00 307 201 168 84 31.50 316 207 174 87 33.50 180 90 35.50 186 93 37.50 193 96															
25.00 282 185 151 75 26.50 290 190 156 78 28.00 298 195 162 81 30.00 307 201 168 84 31.50 316 207 174 87 33.50 180 90 35.50 186 93 37.50 193 96															
26.50 290 190 156 78 28.00 298 195 162 81 30.00 307 201 168 84 31.50 316 207 174 87 33.50 180 90 35.50 186 93 37.50 193 96															
28.00 298 195 162 81 30.00 307 201 168 84 31.50 316 207 174 87 33.50 180 90 35.50 186 93 37.50 193 96															
31.50 316 207 174 87 33.50 180 90 35.50 186 93 37.50 193 96															
33.50 180 90 35.50 186 93 37.50 193 96															
35.50 37.50 193 96						316	207								
37.50															
40.00 200 100	40.00							200	100						
42.50 Gühring delivers twist drills to Gühring	42.50							207							
45.00 214 108 standard up to total length of 1000 mi												standard u	p to total le	ngth of 10	
47.50 221 112 Gühring no. 242, 243, 244												Gunring no). 242, 243,	∠44	
50.00	50.00							228	116		L				

^{*} Gühring std.


Morse taper twist drills

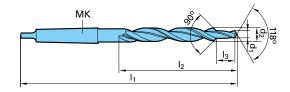
		DIN 345		ı	DIN 346		С	DIN 341			shing di with rsize ta		fo	/VA-dril or drillin ult mate	g		Extra	DIN length		drills	
																	series 1			series 2	
dia. to	total length	flute length	Morse taper	total length	flute length	Morse taper	total length	flute length	Morse taper	total length	flute length	Morse taper	total length	flute length	Morse taper	total length	flute length	Morse taper	total length	flute length	Morse taper
(incl.) mm	4	mm	2	=	mm	2	1 2	mm	2	=	Œ mm	2	=	mm	2	¥	mm	2	1 2	mm	2
2.65	111*	30*	1*																		
3.00	114	33	1																		
3.35 3.75	117 120	36 39	1																		
4.25	124	43	1				145*	64*	1*												
4.75	128	47	1				150*	69*	1*												
5.30 6.00	133 138	52 57	1 1				155 161	74 80	1												
6.70	144	63	1				167	86	1												
7.50	150	69 75	1				174	93	1				100	40	4	065	165	4	220	010	4
8.50 9.50	156 162	75 81	1 1				181 188	100 107	1 1				130 134	49 53	1 1	265 275	165 175	1 1	330 345	210 220	1 1
10.60	168	87	1	185*	87*	2*	197	116	1	214	116	2	138	57	1	285	185	1	360	235	1
11.80	175	94	1	192*	94*	2*	206	125	1	223	125	2	142	61	1	300	195	1	375	250	1
13.20 14.00	182 189	101 108	1	199	101 108	2	215	134 142	1	232	134 142	2	147	66 70	1 2	310	205 220	1	395 410	260 275	1
15.00	212	114	2	235*	114*	3*	245	147	2	268	147	3	172	74	2	340	220	2	425	275	2
16.00	218	120	2	241*	120*	3*	251	153	2	274	153	3	176	78	2	355	230	2	445	295	2
17.00 18.00	223 228	125 130	2	246*	125* 130*	3* 3*	257 263	159 165	2 2	280	159 165	3 3	179	81 85	2	355 370	230 245	2 2	445 465	295 310	2 2
19.00	233	135	2	256	135	3	269	171	2	292	171	3	186	88	2	370	245	2	465	310	2
20.00	238	140	2	261	140	3	275	177	2	298	177	3	212	91	3	385	260	2	490	325	2
21.20 22.40	243 248	145 150	2 2	266 271	145 150	3 3	282 289	184 191	2 2	305 312	184 191	3 3	216 219	95 98	3 3	385 405	260 270	3 3	490 515	325 345	3 3
23.02	253	155	2	276	155	3	296	198	2	319	198	3	222	101	3	405	270	3	515	345	3
23.60	276	155	3	304*	155*	4*	319	198	3	347	198	4	222	101	3	425	270	3	535	345	3
25.00 26.50	281 286	160 165	3	309*	160* 165*	4* 4*	327 335	206 214	3	355 363	206 214	4	225	104 107	3	440	290 290	3	555 555	365 365	3
28.00	291	170	3	319	170	4	343	222	3	371	222	4	259	110	4	460	305	3	580	385	3
30.00	296	175	3	324	175	4	351	230	3	379	230	4	263	114	4	460	305	3	580	385	3
31.50 31.75	301 306	180 185	3 3	329	180 185	4 4	360 369	239 248	3 3	388	239 248	4 4	266 269	117 120	4 4	480 480	320 320	3 3	610	410 410	3
33.50	334	185	4	372*	185*	5*	397	248	4	435	248	5	269	120	4	505	320	4	635	410	4
35.50	339	190	4	377*	190*	5*	406	257	4				272	123	4	530	340	4	665	430	4
37.50 40.00	344 349	195 200	4 4	382*	195* 200*	5* 5*	416 426	267 277	4 4				276 317	127 130	4 5	530 555	340 360	4 4	665 695	430 460	4 4
42.50	354	205	4	392	205	5	436	287	4				320	133	5	555	360	4	695	460	4
45.00	359	210	4	397	210	5	447	298	4				323	136	5	585	385	4	735	490	4
47.50 50.00	364 369	215 220	4	402	215 220	5 5	459 470	310 321	4							585 605	385 405	4	735 765	490 510	4
50.80	374	225	4	412	225	5	475*	326*	4*								.00	•		5	•
53.00	412	225	5	479*	225*	6*	513*	326*	5*												
56.00 60.00	417 422	230 235	5 5	484*	230* 235*	6* 6*	518* 523*	331* 336*	5* 5*												
63.00	427	240	5	494*	240*	6*		555	J												
67.00	432	245	5	499	245	6															
71.00 75.00	437 442	250 255	5 5	504	250 255	6 6															
76.50	447	260	5	514	206	6															
80.00	514	260	6																		
85.00 90.00	519 524	265 270	6 6														deliver				
95.00	529	275	6													of 1000	g standa I mm Gü	ihring r	io. 293		
100.00	534	280	6													299, 56	3, 564,	565, 56	66		
106.00	539*	285*	6*												_						

^{*} Gühring std.


Straight shank subland drills, 90° step angle

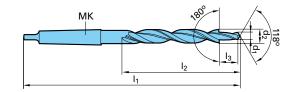
No.	body Ø d2 h8 mm	step Ø d1 h9 mm	overall length I1 mm	step length I2 mm	step length I3 mm	for thread	range of application
4.5 3.3 80 47 11.4 M 4 holes to DIN-ISO 273 (old) and DIN EN 20273 *medial tolerance*. 6.6 5.0 101 63 16.5 M 6 9.0 6.8 125 81 21.0 M 8 11.0 8.5 142 94 25.5 M10 13.5 10.2 160 108 30.0 M12 DIN 8374 for countersinks, fine tolerance 6.0 3.2 93 57 9.0 M 3 8.0 4.3 117 75 11.0 M 4 10.0 5.3 133 87 13.0 M 5 to DIN Z 20273 *fine tolerance* and screwhead countersinks form A and B to DIN 2027 100 M 8 11.5 6.4 142 94 15.0 M 6 11.0 8.4 169 114 19.0 M 8 11.0 8.4 169 114 19.0 M 8 11.0 5.5 142 94 13.0 M 5 to DIN 963 (old) and DIN 964 (old). Gühring std. for countersinks, medial tolerance 6.6 3.4 101 63 9.0 M 3 9.0 4.5 125 81 11.0 M 4 to DIN 74 part 1 (old) -fine tolerance and screwhead countersinks form A and B to DIN 74 part 1 (old) -fine tolerance and screwhead countersinks form A and B to DIN 74 part 1 (old) -fine tolerance and screwhead countersinks form A and B to DIN 74 part 1 (old) -fine tolerance and screwhead countersinks form A and B to DIN 74 part 1 (old) -fine tolerance and screwhead countersinks form A and B to DIN 74 part 1 (old) -fine tolerance and screwhead countersinks form A and B to DIN 74 part 1 (old) -fine tolerance and screwhead countersinks form A and B to DIN 74 part 1 (old) -fine tolerance and screwhead countersinks form A and B to DIN 74 part 1 (old) -fine tolerance and screwhead countersinks form A and B to DIN 74 part 1 (old) -medial tolerance. 7.5 3.4 109 69 9.0 M 3 For clearance holes to DIN-ISO 273 (old) and Screwhead countersinks form A and B to DIN 74 part 1 (old) -medial tolerance. 7.5 3.4 109 69 9.0 M 3 For clearance holes to DIN-ISO 273 (old) and Screwhead countersinks form A and B to DIN 74 part 1 (old) -medial tolerance. 7.5 3.4 109 69 9.0 M 3 For clearance holes to DIN-ISO 273 (old) and Screwhead countersinks form A and B to DIN 74 part 1 (old) -medial tolerance. 7.5 5 3.4 109 69 9.0 M 3 For clearance holes to DIN-ISO 273 (old) and Screwhead countersinks form A and B to DIN 74 part 1 (old) -medial tolerance. 7.5 5 5 151 101 13.0 M 6 For Screw to DIN 963 (old) and DIN 964 (old).				HSS DIN 8378/	Carbide Gül	hring std.	
4.5	3.4	2.5	70	39	8.8	М 3	
5.5	4.5	3.3	80	47	11.4	M 4	
9.0 6.8 125 81 21.0 M 8 11.0 M 964 (old). Significant Content of the Con	5.5	4.2	93	57	13.6	M 5	
11.0	6.6	5.0	101	63	16.5	M 6	
DIN 8374 for countersinks, fine tolerance	9.0	6.8	125	81	21.0	M 8	
Bin 8374 for countersinks, fine tolerance	11.0	8.5	142	94	25.5	M10	
6.0 3.2 93 57 9.0 M 3 For clearance holes to DIN-ISO 273 (old). DIN EN 20273 »fine tolerance« and screwhead countersinks form A and B to DIN 74 part 1 (old) »fine tolerance» and screwhead countersinks form A and B to DIN 74 part 1 (old) »fine tolerance» and screwhead countersinks form A and B to DIN 74 part 1 (old) »fine tolerance» and screwhead countersinks to DIN 74 part 1 (old) »fine tolerance» for m F. For screws to DIN 963 (old) and DIN 964 (old). Gühring std. for countersinks, medial tolerance	13.5	10.2	160	108	30.0	M12	
8.0				DIN 8374 for coun	tersinks, fine tolera	nce	
8.0	6.0	3.2	93	57	9.0	М 3	
10.0 5.3 133 87 13.0 M 5 to DIN 74 part 1 (old) »fine tolerance« and screwhead countersinks to DIN 74 form F. For screws to DIN 963 (old) and DIN 964 (old). 11.5 6.4 142 94 15.0 M 6 and screwhead countersinks to DIN 74 form F. For screws to DIN 963 (old) and DIN 964 (old). Gühring std. for countersinks, medial tolerance 6.6 3.4 101 63 9.0 M 3 For clearance holes to DIN-ISO 273 (old) and screwhead countersinks form A and B to DIN 74 part 1 (old) »fine tolerance» but of DIN 964 (old). 11.0 5.5 142 94 13.0 M 5 Tolerance For screws to DIN 963 (old) and part of DIN 74 part 1 (old) »fine tolerance» but of DIN 74 part 1 (old) »fine tolerance» but of DIN 964 (old). 11.0 5.5 142 94 13.0 M 5 For clearance holes to DIN-ISO 273 (old) and screwhead countersinks form A and B to DIN 74 part 1 (old) »fine tolerance» but of DIN 74 part 1 (old) »fine tolerance» but of DIN 963 (old) and Screwhead countersinks form A and B to DIN 964 (old).	8.0	4.3	117	75	11.0	M 4	` '
11.5	10.0	5.3	133	87	13.0	M 5	
15.0	11.5	6.4	142	94	15.0	M 6	
19.0 10.5 198 135 23.0 M10	15.0	8.4	169	114	19.0	M 8	
6.6 3.4 101 63 9.0 M 3 For clearance holes to DIN-ISO 273 (old) and screwhead countersinks form A and B to DIN 74 part 1 (old) »medial tolerance old). 11.0 5.5 142 94 13.0 M 5 For screws to DIN 963 (old) and DIN 964 (old). 13.0 6.6 151 101 15.0 M 6 (old). 17.2 9.0 191 130 19.0 M 8 For clearance holes to DIN-ISO 273 (old) and DIN 964 (old). DIN 8374 for countersinks, medial tolerance 7.5 3.4 109 69 9.0 M 3 For clearance holes to DIN-ISO 273 (old) and screwhead countersinks form A and B to DIN 74 part 1 (old) »medial tolerance of DIN-ISO 273 (old) and screwhead countersinks form A and B to DIN 74 part 1 (old) »medial tolerance of DIN-ISO 273 (old) and screwhead countersinks form A and B to DIN 74 part 1 (old) »medial tolerance of DIN-ISO 273 (old) and DIN 964 (old).	19.0	10.5	198	135	23.0	M10	
9.0 4.5 125 81 11.0 M 4 to DIN 74 part 1 (old) »medial tolerance«. For screws to DIN 963 (old) and DIN 964 (old). 11.0 5.5 142 94 13.0 M 5 For screws to DIN 963 (old) and DIN 964 (old). 13.0 6.6 151 101 15.0 M 6 (old). 17.2 9.0 191 130 19.0 M 8 For clearance holes to DIN-ISO 273 (old) and Screwhead countersinks form A and B to DIN 74 part 1 (old) »medial tolerance between the screwhead countersinks form A and B to DIN 74 part 1 (old) »medial tolerance and screwhead countersinks form A and B to DIN 74 part 1 (old) »medial tolerance«. For screws to DIN 963 (old) and DIN 964 (old).			G	ühring std. for coun	tersinks, medial tol	erance	
9.0 4.5 125 81 11.0 M 4 to DIN 74 part 1 (old) »medial tolerance«. For screws to DIN 963 (old) and DIN 964 (old). 11.0 5.5 142 94 13.0 M 5 For screws to DIN 963 (old) and DIN 964 (old). 13.0 6.6 151 101 15.0 M 6 (old). DIN 8374 for countersinks, medial tolerance 7.5 3.4 109 69 9.0 M 3 For clearance holes to DIN-ISO 273 (old) and screwhead countersinks form A and B to DIN 74 part 1 (old) »medial tolerance«. For screws to DIN 963 (old) and DIN 964 (old).	6.6	3.4	101	63	9.0	М 3	
11.0 5.5 142 94 13.0 M 5 For screws to DIN 963 (old) and DIN 964 (13.0 M 6 151 101 15.0 M 6 (old). DIN 8374 for countersinks, medial tolerance	9.0	4.5	125	81	11.0	M 4	
17.2 9.0 191 130 19.0 M 8	11.0	5.5	142	94	13.0	M 5	
DIN 8374 for countersinks, medial tolerance	13.0	6.6	151	101	15.0	M 6	(old).
7.5 3.4 109 69 9.0 M 3 For clearance holes to DIN-ISO 273 (old) and screwhead countersinks form A and B to DIN 74 part 1 (old) »medial tolerance«. 9.7 4.5 133 87 11.0 M 4 to DIN 74 part 1 (old) »medial tolerance«. 12.0 5.5 151 101 13.0 M 5 For screws to DIN 963 (old) and DIN 964 14.5 6.6 169 114 15.0 M 6 (old).	17.2	9.0	191	130	19.0	M 8	
7.5 3.4 109 69 9.0 M 3 For clearance holes to DIN-ISO 273 (old) and screwhead countersinks form A and B to DIN 74 part 1 (old) »medial tolerance«. 9.7 4.5 133 87 11.0 M 4 to DIN 74 part 1 (old) »medial tolerance«. 12.0 5.5 151 101 13.0 M 5 For screws to DIN 963 (old) and DIN 964 14.5 6.6 169 114 15.0 M 6 (old).							
9.7 4.5 133 87 11.0 M 4 and screwhead countersinks form A and B to DIN 74 part 1 (old) »medial tolerance«. For screws to DIN 963 (old) and DIN 964 (old).				DIN 8374 for counte	ersinks, medial toler	rance	
9.7 4.5 133 87 11.0 M 4 to DIN 74 part 1 (old) »medial tolerance«. For screws to DIN 963 (old) and DIN 964 (old).	7.5	3.4	109	69	9.0	М 3	
12.0 5.5 151 101 13.0 M 5 For screws to DIN 963 (old) and DIN 964 (old).	9.7	4.5	133	87	11.0	M 4	
14.5	12.0	5.5	151	101	13.0	M 5	For screws to DIN 963 (old) and DIN 964
19.9 9.0 198 135 19.0 M 8	14.5	6.6	169	114	15.0	M 6	(old).
	19.9	9.0	198	135	19.0	M 8	

Straight shank subland drills, 180° step angle



body Ø d2 h8 mm	step Ø d1 h9 mm	overall length I1 mm	flute length I2 mm	step length I3 mm	for thread	range of application
			HSS DIN 8376/	Carbide	Gühring std.	
6.0**	3.4	93**	57**	9.0	M 3	For clearance holes to DIN-ISO 273
6.5	3.4	101	63	9.0	M 3	(old), DIN EN 20273 »medial tolerance«, screwhead countersinks to DIN 974-1 and
8.0	4.5	117	75	11.0	M 4	screwhead countersinks form H, J and K
10.0	5.5	133	87	13.0	M 5	to DIN 74 part 2 (old): »medial tolerance«. For screws to DIN 84 (old), 912 (old), 6912,
11.0	6.6	142	94	15.0	M 6	7513 and DIN 7984.
15.0	9.0	169	114	19.0	M 8	
18.0	11.0	191	130	23.0	M10	
			Güh	ring std.		
6.0	3.2	93	57	9.0	M 3	For clearance holes to DIN-ISO 273
8.0	4.3	117	75	11.0	M 4	(old) and screwhead countersinks form H, J and K to DIN 74 part 2 (old): »fine
						tolerance«. For screws to DIN 84 (old), 912
						(old), 6912, 7513 and DIN 7984.
		Gü	hring std. for counte	ersinks, fine tole	erance (old*)	
5.9	3.2	93	57	11.0	M 3	For screws to DIN 84 (old), DIN 912 (old)
7.4	4.3	109	69	13.0	M 4	and DIN 6912. For old type screwhead countersinks form H, J and K to DIN 75
9.4	5.3	125	81	16.0	M 5	part 2: »fine tolerance«.
10.4	6.4	133	87	19.0	M 6	i e
13.5	8.4	160	108	22.0	M 8	
16.5	10.5	184	125	25.0	M10	
		Güh	ring std. for counter	sinks, medial to	plerance (old*)	
8.0	4.8	117	75	13.0	M 3	For screws to DIN 84 (old), DIN 912 (old)
10.0	5.8	133	87	16.0	M 4	and DIN 6912. For old type screwhead countersinks form H, J and K to DIN 75
11.0	7.0	142	94	19.0	M 5	part 2: »medial tolerance«.
14.5	9.5	169	114	22.0	M 6	
17.5	11.5	191	130	25.0	M 8	

^{*} DIN 75, part 2; ** Gühring std


Morse taper subland drills, 90° step angle

body Ø d2 h8 mm	step Ø d1 h9 mm	overall length I1 mm	flute length I2 mm	Morse taper MK	step length I3 mm	for thread	range of application
				Gühring s	std.		
11.0	5.5	175	94	1	13.0	M 5	For clearance holes to DIN-ISO 273 (old), DIN EN 20273 »medial tolerance«,
13.0	6.6	182	101	1	15.0	M 6	screwhead countersinks to DIN 74 form F
17.2	9.0	228	130	2	19.0	M 8	and screwhead countersinks form A and B to DIN 74 part 1 (old) »medial tolerance«.
21.5	11.0	248	150	2	23.0	M10	For screws to DIN 963 (old) and DIN 964
26.0	14.0	286	165	3	27.0	M12	(old).
29.0	16.0	296	175	3	31.0	M14	
				DIN 837	1		
12.0	5.5	182	101	1	13.0	M 5	For clearance holes to DIN-ISO 273 (old), DIN EN 20273 »medial tolerance«,
14.5	6.6		108	1	15.0	M 6	screwhead countersinks to DIN 74 form F
19.0	9.0	253	135	2	19.0	M 8	and screwhead countersinks form A and B to DIN 74 part 1 (old) »medial tolerance«.
23.0	11.0	248	155	2	23.0	M10	For screws to DIN 963 (old) and DIN 964 (old).
				Gühring s	std.		
11.5	6.4	175	94	1	15.0	M 6	For clearance holes to DIN-ISO 273 (old)
15.0	8.4	212	114	2	19.0	M 8	and screwhead countersinks form A and B to DIN 74 part 1 (old) »fine tolerance«. For
19.0	10.5	233	135	2	23.0	M10	screws to DIN 963 (old) and DIN 964 (old).
23.0	13.0	253	155	2	27.0	M12	
26.0	15.0	286	165	3	31.0	M14	
30.0	17.0	296	175	3	35.0	M16	
				DIN 837	79		
9.0	6.8	162	81	1	21.0	M 8	For tapping size holes to
11.0	8.5	175	94	1	25.5	M10	DIN 336, DIN EN 20273 »medial tolerance« and countersinks in accordance with
13.5	10.2	189	108	1	30.0	M12	clearance holes to DIN-ISO 273 (old).
15.5	12.0	218	120	2	34.5	M14	
17.5	14.0	228	130	2	38.5	M16	
20.0	15.5	238	140	2	43.5	M18	
22.0	17.5	248	150	2	47.5	M20	

Morse taper subland drills, 180 $^{\circ}$ step angle

body (3	step Ø d1 h9	overall ler	igth	flute length	М	orse taper MK	step length	for thread	range of application
mm		mm	mm		mm HSS DIN 837	7/ C:	arbide Gü	mm hring std.		
40.0		5.5	100			.,			N4 5	F
10,0		5,5	168		87		1	13,0	M 5	For clearance holes to DIN-ISO 273 (old), DIN EN 20273 »medial tolerance«,
11,0		6,6	175 212		94 114		1 2	15,0 19,0	M 6	screwhead countersinks to DIN 974-1 and
15,0 18,0		9,0 11,0	212		130		2	23,0	M 8 M10	screwhead countersinks form H, J and K to DIN 74 part 2 (old): "medial tolerance". For
20,0		13,5	238		140		2	23,0	M12	screws to DIN 84 (old), 912 (old), 6912, 75
24,0		15,5	281		160		3	31,0	M14	and DIN 7984.
26,0		17,5	286		165		3	35,0	M16	
30,0		20,0	296		175		3	39,0	M18	
33,0		22,0	334		185		4	43,0	M20	
33,0		22,0	334		165				IVIZU	
				1			Gühring			[
10,0		5,3	168		87		1	13,0	M 5	For clearance holes to DIN-ISO 273 (old) and screwhead countersinks form H, J and
11,0		6,4	175		94		1	15,0	M 6	K to DIN 74 part 2 (old): »fine tolerance«. For
15,0		8,4	212		114		2	19,0	M 8	screws to DIN 84 (old), 912 (old), 6912, 75 and DIN 7984.
18,0		10,5	228		130		2	23,0	M10	and Diff 1904.
20,0		13,0	238		140		2	27,0	M12	
24,0		15,0	281		160		3	31,0	M14	
26,0		17,0	286		165		3	35,0	M16	
					Werksn	orm fü	r Senkungen	ı, Ausführung fei	n (alt*)	
9,4		5,3	162		81		1	16,0	M 5	For screws DIN 84 (old), DIN 912 (old) and
10,4		6,4	168		87		1	19,0	M 6	DIN 6912. For old countersinks form H, J and K to DIN 75 part 2: »fine tolerance«.
13,5		8,4	189		108		1	22,0	M 8	'
16,5		10,5	223		125		2	25,0	M10	
19,0		13,0	233		135		2	28,0	M12	
23,0		15,0	253		155		2	30,0	M14	
25,0		17,0	281		160		3	33,0	M16	
28,0		19,0	291		170		3	36,0	M18	
31,0		21,0	301		180		3	39,0	M 20	
					Werksno	rm für	Senkungen,	Ausführung mitt	el (alt*)	
10,0		5,8	168		87		1	16,0	M 5	For screws DIN 84 (old), DIN 6912. For old
11,0		7,0	175		94		1	19,0	M 6	countersinks form H, J and K to DIN 75 pa 2: »medial tolerance«.
14,5		9,5	212		114		2	22,0	M 8	2. Amodiai toloramos».
17,5		11,5	228		130		2	25,0	M10	
20,0		14,0	238		140		2	28,0	M12	
24,0		16,0	281		160		3	30,0	M14	
26,0		18,0	286		165		3	33,0	M16	
29,0		20,0	296		175		3	36,0	M18	
33,0		23,0	334		185		4	39,0	M20	
nches	mm	inches mm	inches	mm	inches r	nm	MK	inches mm	for thread	range of application
							British Star	ndard		
9/32 1	15.08	25/64 9.92	8 5/8	219	4 3/4	21	2	3/4 19.05	3/8 inch	For British Standard caphead screws.
		29/64 11.51	8 3/4	222	4 7/8	24	2	7/8 22.22	7/16 inch	

inches	mm	inches	mm	inches	mm	inches	mm	MK	inches	s mm	for thread	range of application
								British Stan	dard			
19/32	15.08	25/64	9.92	8 5/8	219	4 3/4	121	2	3/4	19.05	3/8 inch	For British Standard caphead screws.
21/32	16.67	29/64	11.51	8 3/4	222	4 7/8	124	2	7/8	22.22	7/16 inch	
25/32	19.84	33/64	13.10	9 3/8	238	5 1/2	140	2	1	25.40	1/2 inch	

^{*} DIN 75, part 2

Straight shank core drills

Shell-core drills

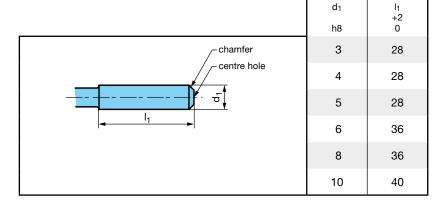
			DIN 344				DIN 222	
diameter up to incl. mm	overall length	flute length mm	diameter up to incl. mm	overall length	flute length mm	nom. Ø up to incl. mm	overall length	nom. Ø of hole mm
4.25	96*	64*	11.70	173	125	35.5	45	13
4.75	102*	69*	13.20	184	134	45.0	50	16
5.30	108	74	14.00	194	142	53.0	56	19
6.00	116	80	15.00	202	147	63.0	63	22
6.70	124	86	16.00	211	153	75.0	71	27
7.50	133	93	17.00	218	159	90.0	80	32
8.50	142	100	18.00	226	165	101.6	90	40
9.50	151	107	19.00	234	171			
10.60	162	116	20.00	242	177			

Taper shank core drills

		DIN 343			DIN 1864	
diameter up to incl. mm	overall length	flute length mm	Morse taper	overall length mm	flute length mm	Morse taper
7.50	150*	69*	1*	174*	93*	1*
8.50	156*	75*	1*	181*	100*	1*
9.50	162	81	1	188	107	1
10.60	168	87	1	197	116	1
11.70	175	94	1	206	125	1
13.20	182	101	1	215	134	1
14.00	189	108	1	223	142	1
15.00	212	114	2	245	147	2
16.00	218	120	2	251	153	2
17.00	223	125	2	257	159	2
18.00	228	130	2	263	165	2
19.00	233	135	2	269	171	2
20.00	238	140	2	275	177	2
21.20	243	145	2	282	184	2
22.40	248	150	2	289	191	2
23.60	253	155	2	296	198	2
25.00	281	160	3	327	206	3
26.50	286	165	3	335	214	3
28.00	291	170	3	343	222	3
30.00	296	175	3	351	230	3
31.50	301	180	3	360	239	3
33.50	334	185	4			
35.50	339	190	4			
37.50	344	195	4			
40.00	349	200	4			
42.50	354	205	4			
45.00	359	210	4			
47.50	364	215	4			
50.00	369	220	4			

Micro-precision drills (total length 25 mm)

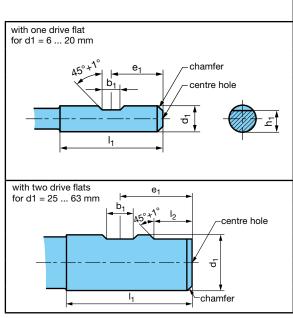
*Gühring std.


		DIN ·	1899		
diameter up to incl. mm	shank Ø mm	flute length mm	diameter up to incl. mm	shank Ø mm	flute length mm
from 0.1 0.12	1.0	0.5	0.67	1.0	4.2
0.15	1.0	0.8	0.75	1.0	4.8
0.19	1.0	1.1	0.79	1.0	5.3
0.24	1.0	1.5	0.85	1.5	5.3
0.30	1.0	1.9	0.95	1.5	6.0
0.38	1.0	2.4	1.06	1.5	6.8
0.48	1.0	3.0	1.18	1.5	7.6
0.53	1.0	3.4	1.32	1.5	8.5
0.60	1.0	3.9	1.45	1.5	9.5

High speed steel straight shanks, DIN 1835-1 (extract)

Form A, plain

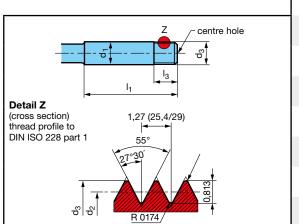
Dimensions in mm



d ₁	l ₁ +2
h8	0
12	45
16	48
20	50
25	56
32	60
40	70

d ₁		
h8 0 50 80	d ₁	l ₁
	h8	0
63 90	50	80
	63	90
I		

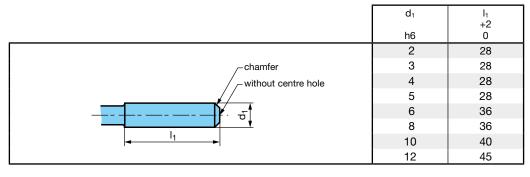
Form B, with drive flat


Dimensions in mm

d ₁ h6	b ₁ +0,05 0	e ₁ 0 -1	h ₁	l ₁ +2 0	l ₂ +1 0	centre hole form R DIN 332 sect. 1
6	4.2	18	4.8	36	-	1.6x2.5
8	5.5	18	6.6	36	-	1.6x3.35
10	7	20	8.4	40	-	1.6x3.35
12	8	22.5	10.4	45	-	1.6x3.35
16	10	24	14.2	48	-	2.0x4.25
20	11	25	18.2	50	-	2.5x5.3
25	12	32	23	56	17	2.5x5.3
32	14	36	30	60	19	3.15x6.7
40	14	40	38	70	19	3.15x6.7
50	18	45	47.8	80	23	3.15x6.7
63	18	50	60.8	90	23	3.15x6.7

Form D, screwed shank

Dimensions in mm


d ₁	d	3	d	2	l ₁	l ₃	centre hole
h8		tol. zone		tol. zone	+2 0	+2 0	form R DIN 332 sect. 1
6	5.9	0 -0.1	5.087	0 -0.1	36	10	1.6 x 2.5
10	9.9	0 -0.1	9.087	0 -0.1	40	10	1.6 x 3.35
12	11.9	0 -0.1	11.087	0 -0.1	45	10	1.6 x 3.35
16	15.9	0 -0.1	15.087	0 -0.1	48	10	2.0 x 4.25
20	19.9	0 -0.15	19.087	0 -0.15	50	15	2.5 x 5.3
25	24.9	0 -0.15	24.087	0 -0.15	56	15	2.5 x 5.3
32	31.9	0 -0.15	31.087	0 -0.15	60	15	3.15 x 6.7

GUHRING 33

Carbide straight shanks DIN 6535 for twist drills and end mills

Form HA, plain

Dimensions in mm

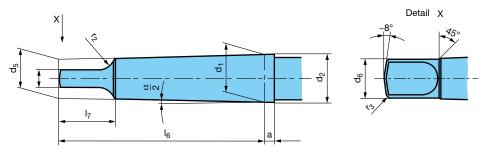
d ₁	l ₁ +2
h6	0
14	45
16	48
18	48
20	50
25	56
32	60

Form HB, with drive flat

Dimensions in mm

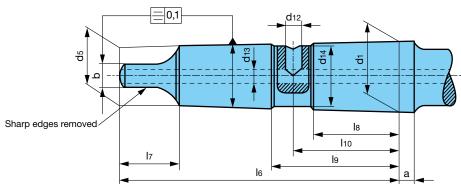
	d ₁ h6	b ₁ +0,05 0	e ₁ 0 -1	h₁ h11	I ₁ +2 0	l ₂ +1 0
with one drive flat	6	4.2	18	5.1	36	-
with <u>one</u> drive flat for d1 = 6 and 20 mm A5° x 0° e ₁ chamfer	8	5.5	18	6.9	36	-
b ₁ / without centre hole	10	7	20	8.5	40	-
	12	8	22.5	10.4	45	-
	14	8	22.5	12.7	45	-
	16	10	24	14.2	48	-
	18	10	24	16.2	48	-
	20	11	25	18.2	50	_
with $\underline{\mathbf{two}}$ drive flats for d1 = 25 and 32 mm $\overset{e_1}{\overset{b_1}{\overset{b_1}{\overset{b_1}{\overset{b_2}{\overset{b_1}}{\overset{b_1}}{\overset{b_1}{\overset{b_1}}{\overset{b_1}}{\overset{b_1}}{\overset{b_1}}{\overset{b_1}}{\overset{b_1}}{\overset{b_1}}{\overset{b_1}}{\overset{b_1}}{\overset{b_1}}{\overset{b_1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	25	12	32	23	56	17
l ₁ chamfer	32	14	36	30	60	19

Form HE, with whistle notch flat without coolant ducts*


Dimer		
	11 1	

*B : 0: 11.1 1 BB10005 11.1 11. 11.1 11	Differsions in thin									
* Design: Straight shanks to DIN 6335 are available with or without oil feed holes. Applications for various tools, dimensions and position of oil feed holes are fully	d ₁	(b ₂)	(b ₃)	h ₂	(h ₃)	I ₁ +2	I ₄	l ₅ Dim.	r ₂	
described within the standard range sections.	h6	*	(D3)	h11	(113)	0	-1	nom.	min.	
for $d_1 = 6$ to 20 mm	6	4,3	_	5,1	-	36	25	18	1,2	
 1	8	5,5	_	6,9	_	36	25	18	1,2	
0 0 0 6+1	10	7,1	_	8,5	_	40	28	20	1,2	
(b ₂)	12	8,2	_	10,4	_	45	33	22,5	1,2	
43°+2°	14	8,1	_	12,7	_	45	33	22,5	1,2	
	16	10,1	_	14,2	_	48	36	24	1,6	
2°-30' without centre hole	18	10,8	_	16,2	_	48	36	24	1,6	
chamfer	20	11,4	_	18,2	_	50	38	25	1,6	
for d ₁ = 25 and 32 mm	25	13,6	9,3	23,0	24,1	56	44	32	1,6	
	32	15,5	9,9	30,0	31,2	60	48	35	1,6	

Morse taper shanks DIN 228 part 1 (extract)


Form B, Morse taper with tang

Dimensions in mm

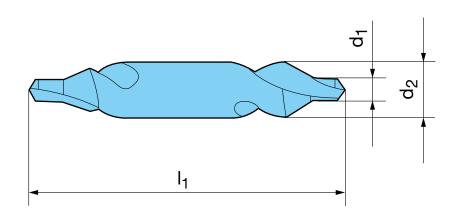
Shank to DIN 228 form B Size	а	Limiting dimensions	b	d ₁	d₂ ≈	d₅ ≈	d ₆ max.	l ₆ 0 -1	l ₇ max.	r ₂ max.	r₃ ≈	<u>α</u> 2
MK 1	3.5	+1.4 0	5.2	12.065	12.2	9.0	8.7	62	13.5	5	1.2	1°25′43″
MK 2	5.0	+1.4 0	6.3	17.780	18.0	14.0	13.5	75	16	6	1.6	1°25′50″
MK 3	5.0	+1.7 0	7.9	23.825	24.1	19.1	18.5	94	20	7	2	1°26′16″
MK 4	6.5	+1.9 0	11.9	31.267	31.6	25.2	24.5	117.5	24	8	2.5	1°29′15″
MK 5	6.5	+1.9 0	15.9	44.399	44.7	36.5	35.7	149.5	29	10	3	1°30′26″

Form BK, Morse taper with tang and coolant lubricant delivery

Dimensions in mm

Dimonolone in i													
Shank to DIN 228 form BK Size	a ±0.1	Limiting dimen- sions	b h13	d ₁	d5 ≈	d ₁₂	d ₁₃	d ₁₄ 0 -0.01	l ₆ 0 -1	l ₇ max.	l ₈	l9	I ₁₀
MK 1	3.5	+1.4 0	5.2	12.065	9.0	-	-	-	62	13.5	-	-	-
MK 2	5	+1.4 0	6.3	17.780	14.0	4.2	4.2	15.0	75	16	20	34	27
мк з	5	+1.7 0	7.9	23.825	19.1	5.0	5.0	21.0	94	20	29	43	36
MK 4	6.5	+1.9 0	11.9	31.267	25.2	6.8	6.8	28.0	117.5	24	39	55	47
MK 5	6.5	+1.9 0	15.9	44.399	36.5	8.5	8.5	40.0	149.5	29	51	69	60

Tolerances core drills


DIN 333							
Ø-range d1 mm	tolerance zones from d1 mm						
0,50 - 2,50	0 +0,14						
3,15 – 5,00	0 +0,18						
6,30 – 10,00	0 +0,22						
12,50	0 +0,27						

for Gühring nos. 285/286								
Ø-range d1 mm	tolerance zones from d1 mm							
1,00 –1,25	0 +0,10							
1,60 – 3,15	0 +0,15							
3,15 – 10,00	0 +0,20							

to B.S. 328							
Ø-range d1 mm	tolerance zones from d1 mm						
1,19 – 1,59	0 ±0,05						
2,38 – 3,17	0 ±0,07						
4,76	0 ±0,07						
6,35 – 7,94	0 ±0,12						

to B.S. 328						
Ø-range d1 mm	tolerance zones from d1 mm					
3,17 – 4,76	-0,020					
6,35	-0,025					
7,94 – 11,11	-0,050					
15,87 – 19,05	-0,050					

to ASA							
Ø-range d1 mm	tolerance zones from d1 mm						
all	0 + 0,07 mm						

Recommended tapping size holes for thread forming

		Std. IS	O metr		ads							ISC) metric DII	fine th	rea	ds					
nom.	pitch	tapp.	tapp.	size	cor	e Ø	nom.	x pitch	tapp.	tapp.	size	COI	e Ø	nom	X	pitch	tapp.	tapp.	size	COI	re Ø
Ø	Р	size	hole	e Ø	of int. th	read 7H*	Ø	Р	size	hole	e Ø	of int. th	read 7H*	Ø		Р	size	hole	e Ø	of int. th	read 7H*
		hole							hole								hole				
		Ø	min.	max.	min.	max.			Ø	min.	max.	min.	max.				Ø	min.	max.	min.	max.
m M O		mm	mm	mm	mm	mm		mm	mm	mm	mm	mm	mm	14.47	mm		mm	mm	mm	mm	mm
M 2	0.40	1.85	1.84	1.88	1.567	1.679		x 0.35	2.35	2.35	2.38	2.121	2.221				16.30				15.751
M 2.2	0.45	2.00	2.01	2.05	1.713	1.838	M 3	x 0.35	2.85	2.85	2.88	2.621	2.721							16.917	
M 2.5	0.45	2.30	2.28	2.32	2.013	2.138	M 4	x 0.35	3.85	3.85	3.88	3.621	3.721							16.376	
M 3	0.50	2.80	2.78	2.85	2.459	2.639	M 4	x 0.50	3.80	3.78	3.83	3.459	3.639								16.310
M 3.5	0.60	3.25	3.23	3.30	2.850	3.050	M 5	x 0.50	4.80	4.78	4.83	4.459	4.639								19.217
M 4	0.70	3.70	3.68	3.76	3.242	3.466	M 5.5	x 0.50	5.30	5.28	5.33	4.959	5.139	M 20						18.376	
M 4.5	0.75	4.20	4.00	4 74	4.404	4.004	M 6	x 0.75	5.65	5.62	5.70	5.188	5.424							22.917	
M 5	0.80	4.65	4.62	4.71	4.134	4.384	M 7	x 0.75	6.65	6.62	6.70	6.188	6.424					23.26		22.376	
M 6	1.00	5.55	5.52	5.62	4.917	5.217	M 8	x 0.75	7.65	7.62	7.70	7.188	7.424				23.10				22.310
M 7	1.00	6.55	6.52	6.62	5.917	6.217	M 8	x 1.00	7.55	7.52	7.62	6.917	7.217				26.30			25.376	
M 8	1.25	7.40	7.36	7.47	6.647	6.982	M 9	x 0.75	8.65	8.62	8.70	8.188	8.424					29.26		28.376	
M 9	1.25	8.40	8.36	8.47	7.647	7.982	M 9	x 1.00	8.55	8.52	8.62	7.917	8.217							31.376	
M 10	1.50	9.30	9.26	9.38	8.376	8.751	M 10	x 0.75	9.65	9.62	9.70	9.188	9.424					35.26		34.376	
M 11				10.38	9.376	9.751	M 10	x 1.00	9.55	9.52	9.62	8.917	9.217					38.26		37.376	
M 12		11.20			10.106			x 1.25	9.40	9.36	9.47	8.647		M 42	Х	1.50	41.30	41.26	41.38	42.376	42.751
M 14		13.10			11.835		M 11	x 0.75				10.188									
M 16		15.10			13.835		M 11	x 1.00			10.62		10.217								
M 18		16.90			15.294		M 12	x 1.00													
M 20		18.90			17.294			x 1.25													
M 22		20.90			19.294			x 1.50													
M 24		22.70			20.752			x 1.00													
M 27					23.752		M 14	x 1.25				12.647									
M 30		28.50			26.211			x 1.50													
M 33		31.50			29.211			x 1.00													
M 36			34.17		31.670			x 1.50				13.376									
M 39					34.670		M 16	x 1.00													
M 42	4.50	40.10	39.95	40.20	37.129	37.979		x 1.50													
					throad 6			x 1.00													

^{*} M 2 up to M 2.5 tapping size hole of int. thread 6H

Tapping size hole diameter tolerance zone for thread forming (to DIN 13, section 50)

Due to the tensile strength it is not necessary to adhere to the tapping size hole diameter tolerance class 6H; tolerance class 7H satisfies the requirement that the flank coverage of external and internal threads should not fall below 0.32 x P. In addition, formed threads generally possess a higher tensile strength in comparison to cut threads thanks to an uninterrupted grain flow and subsequent work hardening.

			INC thr								JNF thre							tworth) I EN ISC			
nom.	threads	tapp.	tapp.	size	cor	e Ø	nom.	thi	reads	tapp.	tapp.	size	cor	e Ø	nom.	threads	tapp.	tapp	. size	cor	e Ø
Ø		size	hole	ø	of int.	thread	Ø			size	hole	e Ø	of int.	thread	Ø		size	hol	e Ø	of int.	thread
		hole								hole							hole				
	per	Ø	min.	max.	min.	max.			per	Ø	min.	max.	min.	max.		pro	Ø	min.	max.	min.	max.
NI: 1	inch	mm	mm	mm	mm		NI: d		nch	mm	mm	mm	mm	mm	inch	inch	mm	mm	mm	mm 0.504	mm
Nr. 1	- 64	1.68	1.67	1.70	1.425	1.580	Nr. 1		72	1.70	1.69	1.72	1.473	1.610	G ¹ / ₁₆	28	7.30	7.28	7.35	6.561	6.843
Nr. 2	- 56	1.98	1.97	2.01	1.694	1.872	Nr. 2		64	2.00	1.99	2.03	1.755	1.910	G ¹ / ₈	28	9.30	9.28	9.35	8.566	8.848
	- 48	2.28	2.27	2.32	1.941	2.146	Nr. 3		56	2.30	2.29	2.34	2.024	2.197	G 1/4	19	12.50		12.55	11.445	11.890
	- 40	2.55	2.54	2.59	2.157	2.385	Nr. 4		48	2.60	2.59	2.63	2.271	2.459	G ³ / ₈	19	16.00			14.950	15.395
Nr. 5	- 40	2.90	2.89	2.94	2.487	2.698	Nr. 5		44	2.90	2.89	2.93	2.550	2.741	G 1/2	14	20.00	19.98	20.12	18.631	19.172
Nr. 6	- 32	3.15	3.14	3.19	2.642	2.896	Nr. 6	-	40	3.20	3.19	3.24	2.819	3.023	G 5/8	14	22.00	21.98	22.12	20.587	21.128
Nr. 8	- 32	3.80	3.78	3.82	3.302	3.531	Nr. 8	- :	36	3.85	3.83	3.88	3.404	3.607	G 3/4	14	25.50	25.48	25.62	24.117	24.658
Nr. 10	- 24	4.35	4.33	4.39	3.683	3.937	Nr. 10) - :	32	4.45	3.43	4.49	3.962	4.166	G ⁷ / ₈	14	29.25	29.23	29.37	27.877	28.418
Nr. 12	- 24	5.00	4.97	5.03	4.343	4.597	Nr. 12	2 -	28	5.10	5.07	5.13	4.496	4.724	G 1	11	32.00	31.98	32.15	30.291	30.931
1/4	- 20	5.75	5.72	5.80	4.978	5.258	1/4	- :	28	5.95	5.92	5.99	5.359	5.588	G 1 ¹ / ₄	11	40.75	40.70	40.85	38.952	39.592
⁵ /16	- 18	7.30	7.26	7.37	6.401	6.731	⁵ /16	- :	24	7.45	7.42	7.50	6.782	7.036							
3/8	- 16	8.80	8.77	8.88	7.798	8.153	3/8	- :	24	9.05	9.02	9.10	8.838	8.636							
7/16	- 14	10.30	10.27	10.37	9.144	9.550	7/16	- :	20	10.55	10.48	10.58	9.728	10.033							
1/2	- 13	11.80	11.77	11.88	10.592	11.024	1/2	- :	20	12.10	12.08	12.18	11.328	11.608							
9/16	- 12	13.30	13.28	13.39	11.989	12.446	9/16	_	18	13.65	13.61	13.72	12.751	13.081							
	- 11	14.80	14.78	14.90	13.386	13.868	5/8	_	18	15.25	15.21	15.32	14.351	14.681							
0.4	- 10	17.90	17.85	17.97	16.307	16.840	3/4	_	16	18.35	15.30	18.41	17.323	17.678							
7,			20.95			19.761		_			21.35		20.269	20.650							
1					21.971		1				24.40		23.114								
•	Ü				2	500	•				10			20.07 1							
																-					

GUHRING 3

 $^{^{\}star}$ M 2.5 x 0.35 up to M 4 x 0.35 tapping size hole of int. thread 6H

Tapping size holes for thread cutting

	Std. IS	O metric						ISO	metric 1	fine thre	eads						NC threa		
nom. Ø	pitch P	tapping size	core of int. thr		nom. x	pitch P	tapping size	cor of int. th		nom. Ø	x pitch	tapping size		re Ø nread 6H	nom. Ø	threads	tapping size	core of int. th	
		hole Ø DIN 336	min.	max.			hole Ø DIN 336	min.	max.			hole Ø DIN 336	min.	max.		pro	hole Ø DIN 336	min.	max.
	mm	mm	mm	mm		mm	mm	mm	mm		mm	mm	mm	mm		inch	mm	mm	mm
M 1	0.25	0.75	0.729	0.785	M 2.5 x	0.35	2.15	2.121	2.221	M 22	x 1.00	21.00	20.917	21.153	Nr. 1	- 64	1.55	1.425	1.580
M 1.1	0.25	0.85	0.829	0.885	M 3.0 x	0.35	2.65	2.621	2.721	M 22	x 1.50	20.50	20.376	20.676	Nr. 2	- 56	1.85	1.694	1.872
M 1.2	0.25	0.95	0.929	0.985	M 3.5 x	0.35	3.15	3.121	3.221	M 22	x 2.00	20.00	19.835	20.210	Nr. 3	- 48	2.10	1.941	2.146
M 1.4	0.30	1.10	1.075	1.142	M 4.0 x	0.50	3.50	3.459	3.599	M 24	x 1.00	23.00	22.917	23.153	Nr. 4	- 40	2.35	2.157	2.385
M 1.6	0.35	1.25	1.221	1.321	M 4.5 x	0.50	4.00	3.959	4.099	M 24	x 1.50	22.50	22.376	22.676	Nr. 5	- 40	2.65	2.487	2.698
M 1.8	0.35	1.45	1.421	1.521	M 5.0 x	0.50	4.50	4.459	4.599	M 24	x 2.00	22.00	21.835	22.210	Nr. 6	- 32	2.85	2.642	2.896
M 2	0.40	1.60	1.567	1.679	M 5.5 x	0.50	5.00	4.959	5.099	M 25	x 1.00	24.00	23.917	24.153	Nr. 8	- 32	3.50	3.302	3.531
M 2.2	0.45	1.75	1.713	1.838	M 6.0 x	0.75	5.20	5.188	5.378	M 25	x 1.50	23.50	23.376	23.676	Nr. 10	- 24	3.90	3.683	3.937
M 2.5	0.45	2.05	2.013	2.138	M 7.0 x	0.75	6.20	6.188	6.378	M 25	x 2.00	23.00	22.835	23.210	Nr. 12	- 24	4.50	4.343	4.597
М 3	0.50	2.50	2.459	2.599	M 8.0 x	0.50	7.50	7.459	7.599	M 27	x 1.00	26.00	25.917	26.153	1/4	- 20	5.10	4.978	5.258
M 3.5	0.60	2.90	2.850	3.010	M 8.0 x	0.75	7.20	7.188	7.378	M 27	x 1.50	25.50	25.376	25.676	⁵ /16	- 18	6.60	6.401	6.731
M 4	0.70	3.30	3.242	3.422	M 8.0 x	1.00	7.00	6.917	7.153	M 27	x 2.00	25.00	24.835	25.210	3/8	- 16	8.00	7.798	8.153
M 4.5	0.75	3.70	3.688	3.878	M 9.0 x	0.75	8.20	8.188	8.378	M 28	x 1.00	27.00	26.917	27.153	7/16	- 14	9.40	9.144	9.550
M 5	0.80	4.20	4.134	4.334	M 9.0 x	1.00	8.00	7.917	8.153	M 28	x 1.50	26.50	26.376	26.676	1/2	- 13	10.80	10.592	11.024
M 6	1.00	5.00	4.917	5.153	M 10 x	0.75	9.20	9.188	9.378	M 28	x 2.00	26.00	25.835	26.210	⁹ /16	- 12	12.20	11.989	12.446
M 7	1.00	6.00	5.917	6.153	M 10 x	1.00	9.00	8.917	9.153	M 30	x 1.00	29.00	28.917	29.153	5/8	- 11	13.50	13.386	13.868
M 8	1.25	6.80	6.647	6.912	M 10 x	1.25	8.80	8.647	8.912	M 30	x 1.50	28.50	28.376	28.676	3/4	- 10	16.50	16.307	16.840
М 9	1.25	7.80	7.647	7.912	M 11 x	0.75	10.20	10.188	10.378	M 30	x 2.00	28.00	27.835	28.210	7/8	- 9	19.50	19.177	19.761
M 10	1.50	8.50	8.376	8.676	M 11 x	1.00	10.00	9.917	10.153	M 30	x 3.00	27.00	26.752	27.252	1	- 8	22.25	21.971	22.606
M 11	1.50	9.50	9.376	9.676	M 12 x	1.00	11.00	10.917	11.153	M 32	x 1.50	30.50	30.376	30.676	1 ¹ / ₈	- 7	25.00	24.638	25.349
M 12	1.75	10.20	10.106	10.441	M 12 x	1.25	10.80	10.647	10.912	M 32	x 2.00	30.00	29.835	30.210	1 ¹ / ₄	- 7	28.00	27.813	28.524
M 14	2.00	12.00	11.835	12.210	M 12 x	1.50	10.50	10.376	10.676	M 33	x 1.50	31.50	31.376	31.676	1 3/8	- 6	30.75	30.353	31.115
M 16	2.00	14.00	13.835	14.210	M 14 x	1.00	13.00	12.917	13.153	M 33	x 2.00	31.00	30.835	31.210	1 ¹ / ₂	- 6	34.00	33.528	34.290
M 18	2.50	15.50	15.294	15.744	M 14 x	1.25	12.80	12.647	12.912	M 33	x 3.00	30.00	29.752	30.252	1 3/4	- 5	39.50	38.938	39.802
M 20	2.50	17.50	17.294	17.744	M 14 x	1.50	12.50	12.376	12.676	M 35	x 1.50	33.50	33.376	33.676	2	- 4.5	45.00	44.679	45.593
M 22	2.50	19.50	19.294	19.744	M 15 x	1.00	14.00	13.917	14.153	M 36	x 1.50	34.50	34.376	34.676					
M 24	3.00	21.00	20.752	21.252	M 15 x	1.50	13.50	13.376	13.676										
M 27	3.00	24.00	23.752	24.252	M 16 x	1.00	15.00	14.917	15.153										
M 30	3.50	26.50	26.211	26.771	M 16 x	1.25	14.80	14.647	14.912										
M 33	3.50	29.50	29.211	29.771	M 16 x	1.50	14.50	14.376	14.676										
M 36	4.00	32.00	31.670	32.270	M 17 x	1.00	16.00	15.917	16.153			-							
M 39	4.00	35.00	34.670	35.270	M 17 x	1.50	15.50	15.376	15.676										
M 42	4.50	37.50	37.129	37.799	M 18 x	1.00	17.00	16.917	17.153										
M 45	4.50	40.50	40.129	40.799	M 18 x			16.376											
M 48	5.00	43.00	42.587	43.297	M 20 x	1.00	19.00	18.917	19.153										
M 52	5.00	47.00	46.587	47.297	M 20 x	1.50	18.50	18.376	18.676										
M 56	5.50	50.50	50.046	50.796	M 20 x	2.00	18.00	17.835	18.210										

^{*} M 1.1 up to M 1.4 tapping size hole of int. thread 5H

		MJ threa					UNJC thre					UNJF thre		
nom.	x pitch	tapping	cor	e Ø	nom.	threads	tapping	COI	re Ø	nom.	threads	tapping	COI	re Ø
Ø	P	size	of int. th	read 5H*	Ø		size	of int. th	hread 3B	Ø		size	of int. th	read 3B
		hole Ø					hole Ø					hole Ø		
		DIN 336	min.	max.		per	DIN 336	min.	max.		per	DIN 336	min.	max.
	mm	mm	mm	mm		inch	mm	mm	mm		inch	mm	mm	mm
MJ 3	x 0.50	2.60	2.513	2.653	Nr. 6	- 32	2.85	2.733	2.939	Nr. 6	- 40	3.00	2.888	3.053
MJ 4	x 0.70	3.40	3.318	3.498	Nr. 8	- 32	3.55	3.393	3.599	Nr. 8	- 36	3.60	3.480	3.663
MJ 5	x 0.80	4.30	4.221	4.421	Nr. 10	- 24	4.00	3.795	4.064	Nr. 10	- 32	4.20	4.054	4.255
MJ 6	x 0.50	5.55	5.513	5.625	Nr. 12	- 24	4.60	4.455	4.704	Nr. 12	- 28	4.75	4.602	4.816
MJ 6	x 0.75	5.35	5.269	5.419	1/4	- 20	5.30	5.113	5.387	1/4	- 28	5.60	5.466	5.662
MJ 6	x 1.00	5.10	5.026	5.216	5/16	- 18	6.75	6.563	6.833	⁵ /16	- 24	7.00	6.906	7.109
MJ 8	x 0.50	7.55	7.513	7.625	3/8	- 16	8.20	7.978	8.255	3/8	- 24	8.60	8.494	8.679
MJ 8	x 0.75	7.35	7.269	7.419	7/16	- 14	9.60	9.346	9.639	⁷ / ₁₆	- 20	10.00	9.876	10.084
MJ 8	x 1.00	7.10	7.026	7.216	1/2	- 13	11.00	10.798	11.095	1/2	- 20	11.60	11.463	11.661
MJ 8	x 1.25	6.90	6.782	6.994	9/16	- 12	12.40	12.228	12.482	9/16	- 18	13.00	12.913	13.122
MJ 10	x 1.00	9.10	9.026	9.216	5/8	- 11	13.80	13.627	13.904	5/8	- 18	14.60	14.501	14.702
MJ 10	x 1.25	8.90	8.782	8.994										
MJ 10	x 1.50	8.60	8.539	8.775										
MJ 12	x 1.75	10.40	10.295	10.560										
MJ 16	x 2.00	14.20	14.051	14.351										

 $^{^{\}star}$ MJ3 x 0.50 up to MJ 5 x 0.80 tapping size hole of int. thread 6H

			JNF thre			В	SW (V	hitwort BS84	n) thread	ds			tworth) t			Steel		ured co	nduit thr 430	eads
nom		threads	tapping	cor		nom.	threads	tapping	cor		nom.	threads	tapping		e Ø	nom.	threads	tapping		re Ø
Ø			size	of int. th	read 2B	Ø		size	of int. th	read 2B	Ø		size	of int.	thread	Ø		size	of int.	thread
		per	hole Ø DIN 336	min.	max.		per	hole Ø DIN 336	min.	max.		per	hole Ø DIN 336	min.	max.		per	hole Ø	min.	max.
		inch	mm	mm	mm		inch	mm	mm	mm	inch	inch	mm	mm	mm		inch	mm	mm	mm
Nr.	1 -	72	1.55	1.473	1.610	W 1/16	60	1.20	1.045	1.230	G ¹ / ₁₆	28	6.80	6.561	6.843	Pg 7	20	11.40	11.280	11.430
Nr.	2 -	64	1.85	1.755	1.910	$W^{3}/_{32}$	48	1.80	1.704	1.912	G ¹ / ₈	28	8.80	8.566	8.848	Pg 9	18	14.00	13.860	14.010
Nr.	3 -	56	2.15	2.024	2.197	W 1/8	40	2.50	2.362	2.591	G 1/4	19	11.80	11.445	11.890	Pg 11	18	17.30	17.260	17.410
Nr.	4 -	48	2.40	2.271	2.459	$W^{5/32}$	32	3.20	2.952	3.214	$G^{3/8}$	19	15.25	14.950	15.395	Pg 13.5	18	19.00	19.060	19.210
Nr.	5 -	44	2.70	2.550	2.741	W 3/16	24	3.60	3.407	3.745	G 1/2	14	19.00	18.631	19.172	Pg 16	18	21.30	21.160	21.310
Nr.	6 -	40	2.95	2.819	3.023	$W^{7/}_{32}$	24	4.50	4.201	4.539	G ⁵ / ₈	14	21.00	20.587	21.128	Pg 21	16	26.90	26.780	27.030
Nr.	8 -	36	3.50	3.404	3.607	$W^{1/4}$	20	5.10	4.724	5.156	G ³ / ₄	14	24.50	24.117	24.658	Pg 29	16	35.50	35.480	35.730
Nr. 1	0 -	32	4.10	3.962	4.166	W 5/16	18	6.50	6.130	6.590	G ⁷ / ₈	14	28.25	27.877	28.418	Pg 36	16	45.50	45.480	45.730
Nr. 1	2 -	28	4.60	4.496	4.724	$W^{3/8}$	16	7.90	7.492	7.987	G 1	11	30.75	30.291	30.931	Pg 42	16	52.50	52.480	52.730
1/4	-	28	5.50	5.359	5.588	$W^{7/}_{16}$	14	9.20	8.789	9.330	G 1 ¹ / ₈	11	35.50	34.939	35.579	Pg 48	16	57.80	57.780	58.030
5/16	-		6.90	6.782	7.036	$W^{1/2}$	12	10.50	9.989	10.591	G 1 ¹ / ₄	11	39.50	38.952	39.592					
3/8			8.50	8.382	8.636	W 9/ ₁₆	12	12.00	11.577	12.179	G 1 ¹ / ₂	11	45.25	44.845	45.485					
7/16	-	20	9.90	9.728	10.033	W $5/8$	11	13.50	12.918		G 1 ³ / ₄	11	51.00	50.788	51.428					
1/2	-	20	11.50		11.608	$W^{3/4}$	10	16.25	15.797		G 2	11	57.00	56.656	57.296					
9/16	-	18	12.90	12.751		$W^{7}/_{8}$	9	19.25	18.611											
5/8			14.50	14.351	14.681	W 1	8	22.00	21.334											
3/4	-	. •	17.50	17.323	17.678	W $1^{1}/_{8}$	7	24.50		24.832										
7/8	-		20.40	20.269	20.650	W 1 1/4	7	27.75	27.103											
1	-		23.25	23.114	23.571	$W 1^{3}/_{8}$	6	30.50	29.504											
1 1/8			26.50	26.289	26.746	W 1 1/2	6	33.50	32.679											
1 1/4	-		29.50	29.464	29.921	W 1 ⁵ / ₈	5	35.50		35.963										
1 3/8	-			32.639	33.096	W 13/ ₄	5	39.00	37.944											
1 1/2		12	36.00	35.814	36.271	W 2	4.5	44.50	43.571	44.877										

	NPT AN American taperec		ead 1:16				
		nom.	threads	tapp. size hole Ø	tapp. size hole Ø	cutting depth	cutting depth
Version A (avoid if possible)	Version B	Ø	pro	cylindrical (A)	conical (B)	ET	BT (min)
(4.1.1.2.1.			inch	d ₁	D ₁	mm	mm
d,	D,	1/16	- 27	6.15	6.39	9.29	10.7
 	- '	1/8	- 27	8.40	8.74	9.32	10.8
		1/4	- 18	11.10	11.36	13.52	15.6
		3/8	- 18	14.30	14.80	13.83	16.0
		1/2	- 14	17.90	18.32	18.07	20.8
		3/4	- 14	23.30	23.67	18.55	21.3
		1	- 11.5	29.00	29.69	22.29	25.6
		1 ¹ / ₄	- 11.5	37.70	38.45	22.80	26.1
	d,	1 1/2	- 11.5	43.70	44.52	22.80	26.1
		2	- 11.5	55.60	56.56	23.20	26.5
		2 1/2	- 8	66.30	67.62	31.75	36.3
		3	- 8	82.30	83.52	33.74	38.5

Metric		ne EG-thre thread inse			for		NC-STI) EC		.29.1	for v		NF-STI) EG		.29.1
nom.	x pitch	tapping		re Ø	nom.	threads	tapping		re Ø	nom.	threads	tapping		re Ø
Ø	Р	size	of int.	thread	Ø		size	of int.	thread	Ø		size	of int.	thread
		hole Ø					hole Ø					hole Ø		
		DIN 336	min.	max.		per		min.	max.		per		min.	max.
	mm	mm	mm	mm		inch	mm	mm	mm		inch	mm	mm	mm
EG M 4	x 0.70	4.20	4.152	4.292	EG Nr. 6	- 32	3.80	3.678	3.879	EG Nr. 6	- 40	3.70	3.644	3.818
EG M 5	x 0.80	5.25	5.174	5.334	EG Nr. 8	- 32	4.40	4.338	4.524	EG Nr. 8	- 36	4.40	4.321	4.498
EG M 6				6.407	EG Nr. 10	- 24	5.20	5.055	5.283	EG Nr. 10	- 32	5.10	4.999	5.184
EG M 8	x 1.25	8.40	8.271	8.483	EG Nr. 12	- 24	5.80	5.715	5.944	EG Nr. 12	- 28	5.70	5.682	5.809
EG M10	x 1.50	10.50	10.324	10.560	EG 1/4	- 20	6.70	6.624	6.868	EG 1/4	- 28	6.60	6.546	6.721
EG M12	x 1.75	12.50	12.379	12.644	EG 5/16	- 18	8.40	8.242	8.489	EG 5/16	- 24	8.25	8.166	8.352
EG M14	x 1.25	14.40	14.271	14.483	EG 3/8	- 16	10.00	9.868	10.127	EG 3/8	- 24	9.80	9.754	9.931
EG M16	x 2.00	16.50	16.433	16.733	EG ⁷ / ₁₆	- 14	11.60	11.506	11.783	EG ⁷ / ₁₆	- 20	11.50	11.389	11.585
					EG 1/2	- 13	13.30	13.122	13.393	EG ¹ / ₂	- 20	13.10	12.974	13.172
					EG ⁹ / ₁₆	- 12	14.90	14.747	15.032	EG 9/ ₁₆	- 18	14.70	14.592	14.798
					EG 5/8	- 11	16.50	16.375	16.673	EG ⁵ / ₈	- 18	16.25	16.180	16.386

GÜHRING 39

From 1/64 to 11 63/64

Size (inch)	mm	Part of inch (decimal)	Size (inch)	mm	Part of inch (decimal)	Size (inch)	mm	Part of inch (decimal)	Size (inch)	mm	Part of inch (decimal)
-	0.10	0.0039	51	1.70	0.0670	4	5.31	0.2090	-	14.00	0.5512
97	0.15	0.0059		1.75	0.0689	3	5.41	0.213	9/16	14.29	0.5625
96	0.16	0.0063	50	1.78	0.0700	7/00	5.50	0.2165	07/04	14.50	0.5709
95 94	0.17 0.18	0.0067 0.0071	49	1.80 1.85	0.0709 0.0730	7/32 2	5.56 5.61	0.2188 0.221	37/64	14.68 15.00	0.5781
93	0.16	0.0071	49	1.90	0.0730	1	5.79	0.228	19/32	15.00	0.5938
92	0.20	0.0079	48	1.93	0.0760	A	5.94	0.234	39/64	15.48	0.6094
91	0.21	0.0083		1.95	0.0768	15/64	5.95	0.2344		15.50	0.6102
90	0.22	0.0087	5/64	1.98	0.0781	-	6.00	0.2362	5/8	15.88	0.625
89	0.23	0.0091	47	1.99	0.0785	В	6.05	0.238	-	16.00	0.6299
88	0.24	0.0095	-	2.00	0.0787	С	6.15	0.242	41/64	16.27	0.6406
-	0.25	0.0098		2.05	0.0807	D	6.25	0.246		16.50	0.6496
87	0.25	0.0100	46	2.06	0.0810	1/4	6.35	0.25	21/32	16.67	0.6562
86	0.26 0.27	0.0102 0.0105	45	2.08 2.15	0.0820	Е	6.35 6.50	0.25 0.2559	43/64	17.00 17.07	0.6693 0.6719
60	0.27	0.0105	44	2.13	0.0860	F	6.53	0.257	11/16	17.46	0.6875
85	0.28	0.0110	43	2.26	0.0890	G	6.63	0.261	,	17.50	0.689
	0.29	0.0114	42	2.37	0.0935	17/64	6.75	0.2656	45/64	17.86	0.7031
84	0.29	0.0115	3/32	2.38	0.0938		6.75	0.2657	-	18.00	0.7087
-	0.30	0.0118	41	2.44	0.0960	Н	6.76	0.266	23/32	18.26	0.7188
83	0.30	0.0120	40	2.50	0.0980	I	6.91	0.272		18.50	0.7283
82	0.32	0.0125	39	2.53	0.0995	-	7.00	0.2756	47/64	18.65	0.7344
	0.32	0.0126	38	2.58	0.1015	J	7.04	0.2772	-	19.00	0.748
81	0.33	0.0130	37	2.64	0.1040	K	7.14	0.281	3/4	19.05	0.75
80 79	0.34 0.37	0.0135 0.0145	36 7/64	2.71 2.78	0.1065 0.1094	9/32 L	7.14 7.37	0.2812	49/64	19.45	0.7656
1/64	0.40	0.0145	35	2.78	0.1094	M	7.37 7.49	0.29	25/32	19.50 19.84	0.7677
78	0.41	0.0160	34	2.82	0.111	101	7.50	0.2953	-	20.00	0.7874
77	0.46	0.0180	33	2.87	0.113	19/64	7.54	0.2969	51/64	20.24	0.7969
-	0.50	0.0197		2.90	0.1142	N	7.67	0.3020		20.50	0.8071
76	0.51	0.0200	32	2.95	0.116		7.75	0.3051	13/16	20.64	0.8125
75	0.53	0.0210	-	3.00	0.1181	5/16	7.94	0.3125	-	21.00	0.8268
74	0.57	0.0225	31	3.05	0.12	-	8.00	0.315	53/64	21.03	0.8281
-	0.60	0.0236	1/8	3.18	0.125	0	8.03	0.316	27/32	21.43	0.8438
73	0.61	0.0240	30	3.26	0.1285	P	8.20	0.323	55/04	21.50	0.8465
72 71	0.64	0.0250 0.0260	29	3.30 3.45	0.1299	21/64 Q	8.33	0.3281	55/64	21.84 22.00	0.8594
-	0.66 0.70	0.0260	29	3.50	0.1378	Q	8.43 8.50	0.3346	7/8	22.00	0.875
70	0.70	0.0270	28	3.57	0.1405	R	8.61	0.339	170	22.50	0.8858
69	0.74	0.0292	9/64	3.57	0.1406	11/32	8.73	0.3438	57/64	22.62	0.8906
-	0.75	0.0295	27	3.66	0.144		8.75	0.3445	-	23.00	0.9055
68	0.79	0.0310	26	3.73	0.147	S	8.84	0.348	29/32	23.02	0.9062
1/32	0.79	0.0313		3.75	0.1476	-	9.00	0.3543	59/64	23.42	0.9219
-	0.80	0.0315	25	3.80	0.1495	Т	9.09	0.358		23.50	0.9252
67	0.81	0.0320	24	3.86	0.152	23/64	9.13	0.3594	15/16	23.81	0.9375
66	0.84	0.0330	23 5/32	3.91 3.97	0.154 0.1562	U	9.35 9.50	0.368	61/64	24.00 24.21	0.9449
65	0.89 0.90	0.0350 0.0354	22	3.99	0.1502	3/8	9.53	0.374	01/04	24.21	0.9646
64	0.91	0.0360	-	4.00	0.1575	V	9.56	0.377	31/32	24.61	0.9688
63	0.94	0.0370	21	4.04	0.159	W	9.80	0.386		25.00	0.9843
62	0.97	0.0380	20	4.09	0.161	25/64	9.92	0.3906	63/64	25.00	0.9844
61	0.99	0.0390		4.20	0.1654	-	10.00	0.3937	1	25.40	1.00
-	1.00	0.0394	19	4.22	0.166	Х	10.08	0.397			
60	1.02	0.0400	18	4.31	0.1695	Y	10.26	0.4040			
59	1.04	0.0410	11/64	4.37	0.1719	13/32	10.32	0.4062			
58 57	1.07 1.09	0.0420 0.0430	17 16	4.39 4.50	0.173 0.177	Z	10.49 10.50	0.413 0.4134			
56	1.18	0.0430	15	4.50	0.177	27/64	10.50	0.4134			
3/64	1.19	0.0469	14	4.62	0.182	-	11.00	0.4331			
,	1.20	0.0472	13	4.70	0.185	7/16	11.11	0.4375			
	1.25	0.0492	3/16	4.76	0.1875		11.50	0.4528			
	1.30	0.0512	12	4.80	0.189	29/64	11.51	0.4531			
55	1.32	0.0520	11	4.85	0.191	15/32	11.91	0.4688			
54	1.40	0.0550	10	4.91	0.1935	-	12.00	0.4724			
	1.45	0.0571	9	4.98	0.196	31/64	12.30	0.4844			
FO	1.50	0.0591	8	5.00 5.05	0.1968	1/2	12.50	0.4921			
53	1.51 1.55	0.0595 0.0610	7	5.05 5.11	0.199 0.2010	-	12.70 13.00	0.50 0.5118			
1/16	1.55	0.0610	13/64	5.11	0.2010	33/64	13.10	0.5116			
.,	1.60	0.0630	6	5.18	0.2040	17/32	13.49	0.5312			
52	1.61	0.0635	5	5.22	0.2055		13.50	0.5315			

1 inch = 25.400 0 mm, see DIN 4890 (issue 2/75)

The new material abbreviations (selection)

mat. nos.	abbreviation old	abbreviation new	mat. nos.	abbreviation old	abbreviation new	mat. nos.	abbreviation old	abbreviation new	mat. nos.	abbreviation old	abbreviation new
0.6010	GG10	EN-GJL-100	1.0728	60 S 20	-	1.4436	X5CrNiMo 17 13 3	X3CrNiMo17-13-3	1.7043	-	38Cr4
0.6020	GG20	EN-GJL-200	1.0736	9 SMn 36	11SMn37	1.4438	X2CrNiMo 18 16 4	X2CrNiMo18-15-4	1.7147	20 MnCr 5	20MnCr5
0.6025	GG25	EN-GJL-250	1.0737	9 SMnPb 36	11SMnPb37	1.4460	X4CrNiMo2752	X3CrNiMoN27-5-2	1.7149	20 MnCrS 5	20MnCrS5
0.6035	GG35 GGG50	EN-GJL-350 EN-GJS-500-7	1.0756	35 SPb 20 45 SPb 20	35SPb20 46SPb20	1.4462	X2CrNiMoN2253 X6CrTiNb 18	X2CrNiMoN22-5-3 X2CrTiNb18	1.7176 1.7182	55 Cr 3 27 MnCrB 5 2	55Cr3 27MnCrB5-2
0.7050 0.7070	GGG70	EN-GJS-500-7 EN-GJS-700-2	1.0760	45 SFD 20	38SMn26	1.4510	X6CrTiND 18	X3CrTi17	1.7185	33 MnCrB 5 2	33MnCrB5-2
0.8035	GTW35	EN-GJMW-350-4	1.0761	_	38SMnPb26	1.4511	X6CrNb 17	X3CrNb17	1.7189	39 MnCrB 6 2	39MnCrB6-2
0.8155	GTS55	EN-GJMB-550-4	1.0762	_	44SMn28	1.4512		X2CrTi12	1.7213	25 CrMoS 4	25CrMoS4
0.8170	GTS70	EN-GJMB-700-2	1.0763	-	44SMnPb28	1.4520	X1CrTi 15	X2CrTi17	1.7218	25 CrMo 4	25CrMo4
1.0022	St 01Z	-	1.0873	-	DC06 [Fe P06]	1.4521	X2CrMoTi 18 2	X2CrMoTi18-2	1.7219	-	26CrMo4-2
1.0035	St 33	S185	1.1103	EStE 255	S255NL1	1.4522	X2CrMoNb 18 2	X2CrMoNb18-2	1.7220	34 CrMo 4	34CrMo4
1.0039	St 37 -2	S235JRH	1.1105	EStE 315	S315NL1	1.4532	X7CrNiMoAl 15 7	X8CrNiMoAl15-7-2	1.7225	42 CrMo 4	42CrMo4
1.0044	St 44 -2 St 50 -2	S275JR E295	1.1121	Ck 10 Ck15	C10E C15E	1.4541	X6CrNiTi18 10 X5CrNiCuNb 17 4	X6CrNiTi18-10 X5CrNiCuNb16-4	1.7226	34 CrMoS 4 42 CrMoS 4	34CrMoS4 42CrMoS4
1.0060	St 60 -2	E335	1.1151	Ck 22	C22E	1.4550	X6CrNiNb 18 10	X6CrNiNb18-10	1.7228	50 CrMo 4	50CrMo4
1.0070	St 70 –2	E360	1.1158	Ck 25	C25E	1.4558	X2NiCrAlTi 32 20	X2NiCrAlTi32-20	1.7264	20 CrMo 5	20CrMo5
1.0114	St 37 –3U	S235J0	1.1170	28 Mn 6	28Mn6	1.4567	X3CrNiCu 18 9 X	X3CrNiCu18-9-4	1.7321	20 MoCr 4	20MoCr4
1.0226	St 02Z	DX51D	1.1178	Ck 30	C30E	1.4568	X7CrNiAl 17 7	X7CrNiAl17-7	1.7323	20 MoCrS 4	20MoCrS4
1.0242	StE 250 -2Z	S250GD	1.1181	Ck 35	C35E	1.4571	-	X6CrNiMoTi17-12-2	1.7333	22 CrMoS 3 5	22CrMoS3-5
1.0244	StE 280 -2Z	S280GD	1.1186	Ck 40	C40E	1.4577	X3CrNiMoTi 25 25	X3CrNiMoTi25-25	1.7335	13 CrMo 4 4	13CrMo4-5
1.0250	StE 320 -3Z C 10	S320GD	1.1191	Ck 45 Ck 55	C45E C55E	1.4592	X1CrMoTi 29 4 X10CrAl 7	X2CrMoTi29-4 X10CrAlSi7	1.7362	12 CrMo 19 5 10 CrMo 9 10	12CrMo19-5 10CrMo9-10
1.0301	C 10 Pb	_	1.1206	Ck 50	C50E	1.4724		X10CrAlSi13	1.7383	-	11CrMo9-10
1.0306	St 06 Z	DX54D	1.1221	Ck 60	C60E	1.4742	X10CrAl 18	X10CrAlSi18	1.7779	-	20CrMoV13-5-5
1.0312	St 15	DC05 [Fe P05]	1.1241	Cm 50	C50R	1.4762	X10CrAl 24	X10CrAlSi25	1.8159	50 CrV 4	51CrV4
1.0319	RRStE 210.7	L210GA	1.1750	C 75 W	C75W	1.4821	X20CrNiSi 25 4	X20CrNiSi25-4	1.8504	34 CrAl 6	34CrAl6
1.0322	-	DX56D	1.2067	102 Cr 6	102Cr6	1.4828	X15CrNiSi 20 12	X15CrNiSi20-12	1.8519	31 CrMoV 9	31CrMoV9
1.0330	St 12 [St 2]	DC01 [Fe P01]	1.2080	-	X210Cr12	1.4833	X7CrNi 23 14	X7CrNi23-12	1.8550	34 CrAINi 7	34CrAINi7
1.0333	USt 13 St 14 [St 4]	- DC04 [Fe P04]	1.2083	_	X42Cr13 105WCr6	1.4841	X15CrNiSi 25 20 X12CrNi 25 21	X15CrNiSi25-21 X12CrNi25-21	1.8807	13 MnNiMoV 5 4 18 MnMoV 5 2	13MnNiMoV5-4 18MnMoV5-2
1.0336	H I	P235GH	1.2767	_	X45NiCrMo4	1.4864	X120INI 23 21 X12NiCrSi 36 16	X120INI23-21 X12NiCrSi35-16	1.8815	18 MnMoV 6 3	18MnMoV6-3
1.0347	RRSt 13 [RRSt 3]	DC03 [Fe P03]	1.3243	S6-5-2-5	S 6-5-2-5	1.4878	X12CrNiTi18 9	X10CrNiTi18-10	1.8821	StE 355 TM	P355M
1.0348	UHI	P195GH	1.3343	S6-5-2	S 6-5-2	1.4903	-	X10CrMoVNb9-1	1.8824	StE 420 TM	P420M
1.0350	St 03Z	DX52D	1.3344	S6-5-3	S 6-5-3	1.5026	55 Si 7	55Si7	1.8826	StE 460 TM	P460M
1.0355	St 05Z	DX53D	1.4000	X6Cr 13	X6Cr13	1.5131	50 MnSi 4	50MnSi4	1.8828	EStE 420 TM	P420ML2
1.0356	TTSt 35 N	P215NL	1.4002	X6CrAl 13	X6CrAl13	1.5415	15 Mo 3	16Mo3	1.8831	EStE 460 TM	P460ML2
1.0358	St 05 Z C 15	_	1.4003	X2Cr 11	X2CrNi12 X12CrS13	1.5530	21 MnB 5 30 MnB 5	20MnB5 30MnB5	1.8832	TStE 355 TM TStE 420 TM	P355ML1 P420ML1
1.0401	C 22	C22	1.4006	X10Cr 13	X12Cr13	1.5532	38 MnB 5	38MnB5	1.8837	TStE 460 TM	P460ML1
1.0403	C 15 Pb	-	1.4016	X6Cr 17	X6Cr17	1.5637	10 Ni 14	12Ni14	1.8879	StE	P690Q
1.0406	C 25	C25	1.4021	X20Cr 13	X20Cr13	1.5662	-	X11CrMo5+I	1.8880	WStE	P690QH
1.0419	St 52.0	L355	1.4028	X30Cr 13	X30Cr13	1.5680	-	X12Ni5	1.8881	TStE	P690QL1
1.0424	St 45.8 (ersetzt)	P265	1.4031	X38Cr 13	X38Cr13	1.5710	36 NiCr 6	36NiCr6	1.8882	10 MnTi 3	10MnTi3
1.0424	St 42.8 (ersetzt) H2	P265 P265GH	1.4034	X46Cr 13 X65Cr13	X46Cr13 X65Cr13	1.5715	14 NiCr 14	16NiCrS4 15NiCr13	1.8888	StE 380	P690QL2 S380N
1.0429	StE 290.7 TM	L290MB	1.4057	X20CrNi 17 2	X17CrNi16-2	1.6210	15 MnNi 6 3	15MnNi6-3	1.8901	StE 460	S460N
	StE 240.7	L245NB		X12CrMoS 17	X14CrMoS17		16 MnNi 6 3	16MnNi6-3		StE 420	S420N
1.0459	RRStE 240.7	L245GA	1.4105	X4CrMoS 18	X6CrMoS17	1.6310	20 MnMoNi 5 5	20MnMoNi5-5	1.8903	TStE 460	S460NL
1.0461	StE 255	S255N		X65CrMo 14	X70CrMo15	1.6311	20 MnMoNi 4 5	20MnMoNi4-5	1.8905	StE 460	P460N
1.0473	19 Mn 6	P355GH		X55CrMo 14	X55CrMo14	1.6341		11NiMoV5-3	1.8907	StE 500	S500N
1.0481	17 Mn 4 StE 290.7	P295GH L290NB	1.4112	X90CrMoV 18 X6CrMo 17 1	X90CrMoV18 X6CrMo17-1	1.6368		15NiCuMoNb5 36CrNiMo4	1.8910	TStE 380 EStE 380	S380NL S380NL1
1.0484	StE 285	P275N	1.4116	X45CrMoV 15	X50CrMoV15	1.6523		21NiCrMo2-2	1.8912	TStE 420	S420NL
1.0501	C 35	C35		X20CrMo 13	X20CrMo13	1.6526		21NiCrMoS2-2	1.8913	EStE 420	S420NL1
1.0503	C 45	C45	1.4122	X35CrMo 17	X39CrMo17-1	1.6580	30 CrNiMo 8	30CrNiMo8	1.8915	TStE 460	P460NL1
	StE 315	P315N		X105CrMo 17	X105CrMo17		34 CrNiMo 6	34CrNiMo6	1.8917	WStE 500	S500NL
1.0511	C 40	C40	1.4301	X5CrNi 18 10	X5CrNi18-10	1.6587		18CrNiMo7-6	1.8918	EStE 460	P460NL2
1.0528	C 30	C30	1.4303	X5CrNi 18 12 X10CrNiS 18 9	X4CrNi18-12 X8CrNiS18-9	1.7003	38 Cr 2 46 Cr 2	38Cr2 46Cr2	1.8919	EStE 500 WStE 380	S500NL1
1.0529 1.0535	StE 350 -3Z C 55	S350GD C55	1.4305	X2CrNi 19 11	X2CrNi19-11		17 Cr 3	17Cr3	1.8930	WStE 420	P380NH P420NH
1.0539	StE 355N	S355NH	1.4310	X12CrNi 17 7	X10CrNi18-8		38 CrS 2	38CrS2	1.8935	WStE 460	P460NH
1.0540	C 50	C50	1.4311	X2CrNiN 18 10	X2CrNiN18-10		46 CrS 2	46CrS2	1.8937	TStE 500	P500NH
1.0547	St 52 –3U	S355J0H	1.4313	X4CrNi 13 4	X3CrNiMo13-4	1.7030	28 Cr 4	28Cr4	1.8972	StE 415.7	L415NB
	StE 360.7	L360NB	1.4318	X2CrNiN 18 7	X2CrNiN18-7		34 Cr 4	34Cr4	1.8973	StE 415.7 TM	L415MB
1.0601	C 60	C60	1.4335	X1CrNi 25 21	X1CrNi25-21		37 Cr 4	37Cr4	1.8975	StE 445.7 TM	L450MB
	15 S 10	110Mr00	1.4361	X1CrNiSi 18 15	X1CrNiSi18-15-4		41 Cr 4	41Cr4	1.8977	StE 480.7 TM	L485MB
	9 SMn 28 9 SMnPb 28	11SMn30 11SMnPb30	1.4362	X2CrNiN 23 4 X5CrNiMo 17 122	X2CrNiN23-4 X5CrNiMo17-12-2		28 CrS 4 34 CrS 4	28CrS4 34CrS4	1.69/8	StE 550.7 TM	L555MB
	10 S 20	10\$20	1.4404		X2CrNiMo17-12-2		37 CrS 4	37CrS4			
1.0722	10 S Pb 20	10SPb20	1.4410	X10CrNiMo 18 9	X2CrNiMoN25-7-4		41 CrS 4	41CrS4			
	35 S 20	35S20	1.4418	X4CrNiMo 16 5	X4CrNiMo16-5-1		16 MnCr 5	16MnCr5			
1.0727	45 S 20	46S20	1.4435	X2CrNiMo 18143	X2CrNiMo18-14-3	1.7139	16 MnCrS 5	16MnCrS5			

GÜHRING 41

Deep hole drills

Page

<u>44</u>	Basics
<u>44</u>	A brief introduction to the subject of deep hole drilling
<u>46</u>	Single fluted gun drill accuracy
<u>49</u>	Quality features
<u>51</u>	MQL Technology
<u>53</u>	Application of Gühring coatings
<u>54</u>	Conventional deep hole drills
<u>54</u>	The drilling process on conventional machines (BAZ)
<u>55</u>	The drilling process on deep hole drilling machines
<u>56</u>	Pilot hole and drill bush
<u>58</u>	Cooling lubricant
<u>62</u>	Characteristics
<u>64</u>	Head forms
<u>66</u>	Drivers
<u>68</u>	Re-grinding and re-tipping
<u>69</u>	Application hints/Troubleshooting
<u>78</u>	Solid carbide spiral-fluted deep hole drills
<u>78</u>	Application recommendations
<u>80</u>	Coolant values
<u>82</u>	HSS/HSCO spiral-fluted deep hole drills
<u>82</u>	Application recommendations
<u>84</u>	Tables
<u>84</u>	The new material abbreviations (selection)
<u>85</u>	Conversion table inch - millimetre

A brief introduction to the subject of deep hole gun drilling

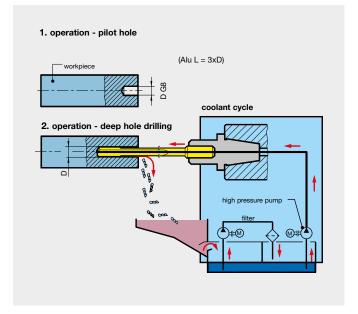
In the machining world, drilling depths of 10xD and deeper are regarded as deep hole drilling operations, whereby smaller drilling depths can naturally also be produced with gun drills. Advantage is taken of the positive side effects, as for example good surface quality, low deviation from concentricity and optimised alignment accuracy..

High pressure cooling - has become a matter of course.

In recent years, internal cooling has established itself for all drilling tools. Coolants are now living up to their name and being supplied via coolant ducts to where they are urgently required. Considerable improvements in tool life and less breakages have been achieved by this measure for twist drills, taps etc.

Every conventional machine tool currently on the market can be supplied with high pressure internal cooling and is therefore also suitable for deep hole drilling.

The share of gun drills on machining centres, lathes etc. is forever gaining more importance. The process is therefore increasing in popularity in the machining world.


All gun drills must have support for the pilot hole.

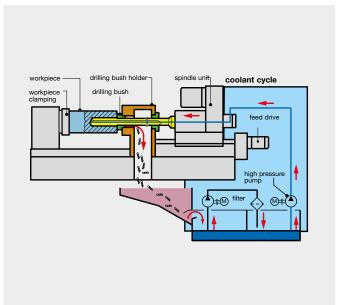
Gun drills must never operate at full speed without support in the machine shop.

Attention!

Gun drills with steel shanks are predominantly NOT suitable for shrink fitting! (exception T16 see next page)

Deep hole drilling on conventional machine tools

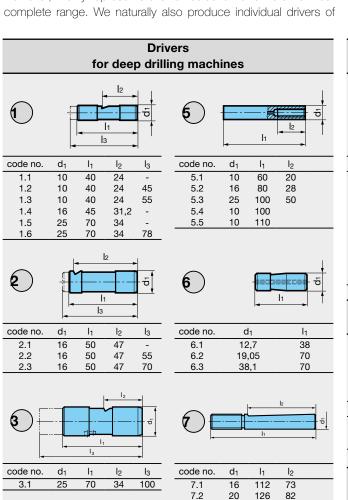
Typical procedure with all gun drills

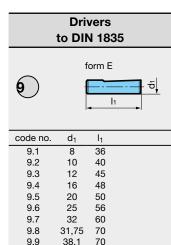

on conventional machine tools

- production of pilot hole (L ≈ 3xD, tolerance H8)
- enter at low revolutions, approx. 200 rev./min, feed rate approx. 500 mm/min. With tools for drilling depths in excess than 40xD enter the pilot hole revolving in left hand direction.
- setting of coolant pressure and revolutions
- uninterrupted drilling to required drilling depth without wood pecking. When applying gun drills with increased lengthdiameter-ratio, we recommend machining with reduced cutting parameters (approx. 75% of the optimal cutting speed) up to a drilling depth of approx. 25 mm.
- switching off coolant supply after reaching the required hole depth
- withdrawal in top gear (max. 10 m/min) with stationary spindle

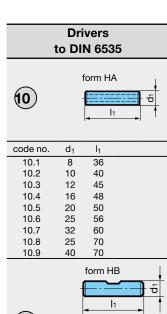
Application advice

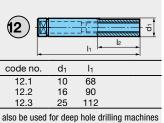
- \bullet For drilling depths in excess than 40xD we recommend the use of two or more gun drills, e. g. Ø 10 x 400 mm and Ø 9.95 x 800 mm.
- Gun drills for drilling depths of more than 40xD should enter the pilot hole revolving in the left hand direction.
- When changing tools for drilling depths of more than 40xD, the tool can be damped by switching on coolant supply for just one second.
- Generally we recommend the use of soluble oil with a minimum oil content of 10 %.
- Single-fluted gun drills for long-chipping aluminium should be supplied with point grind 180° and coolant chamber
- For optimized bore straightness an additional cylindrical guide part can be used (optional).


Deep hole drilling machines



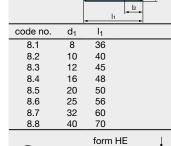
The range of drivers introduced below is available ex stock. However, it only represents a small selection of drivers from our

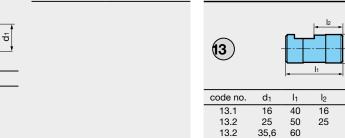

the highest precision to customer drawings. Attention! EB 100 requires drivers with positioning lugs. Further information on request.

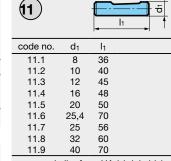


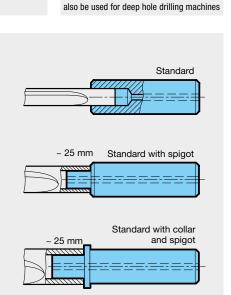
9.10

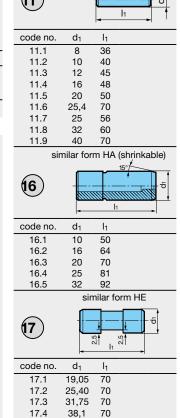
40




Drivers


to Speed-Bit-System


Drivers to VDI-draft



with code no. 8.6, 8.7, 8.8

also be used for deep hole drilling machines

Driver variations to suit gun drill tubes

lι

 I_1

70

70

70

70

19.05

12,70

25.40

31.75

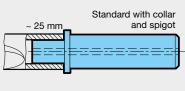
36,10

code no.

4.1

4.2

4.3

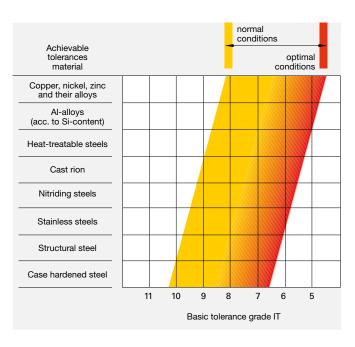

4.4

4.5

Solution for nom.-Ø < driver-Ø (difference must be appr. 6 mm): tube shank installed in driver

Solution for nom.-Ø ≠ driver-Ø (close parallel): tube shank installed over spigot

Solution driver-Ø: for nom.-Ø tube shank installed over spigot, inside-Ø of tube >driver-Ø, shank tube shank fits against collar shoulder.


GÜHRING

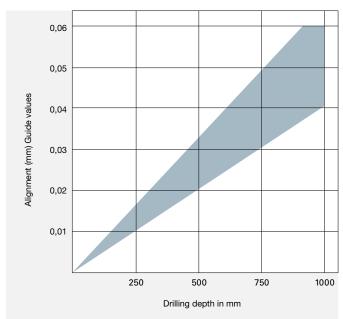
Single fluted gun drill accuracy

Basic tolerances*

The application of single-fluted gun drills can achieve a lower basic tolerance, as the cutting forces at the cutting edge are absorbed by the supporting strips, unlike twist drills where the slightest deviation of the two cutting edges causes a larger hole.

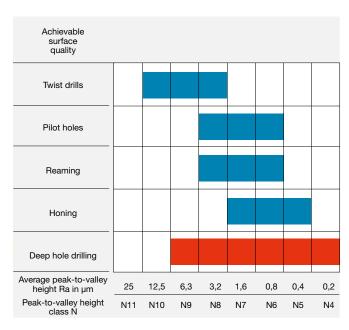
Surface quality*

The forces at the cutting edge are absorbed by the support bushes, which in return burnishes the surface.


Lubrication between the supporting strips and hole surface is therefore very important.

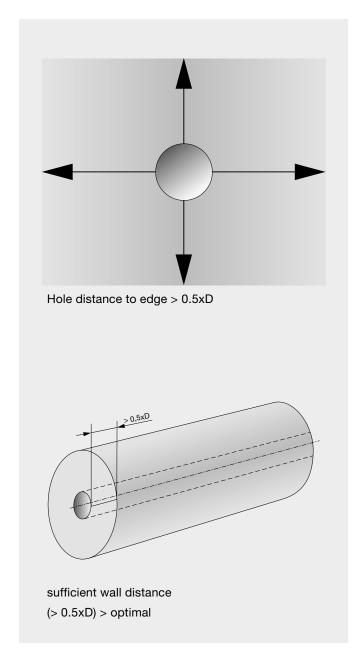
The better the lubricant, the better the surface quality.

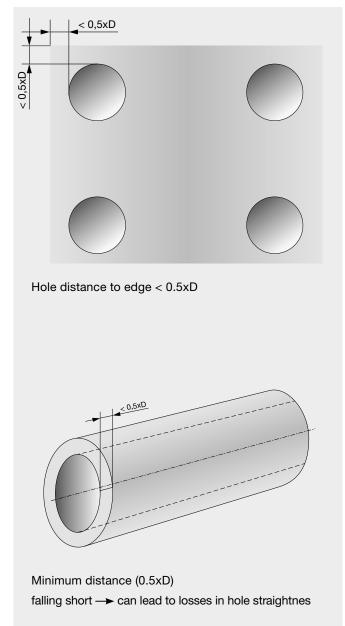
Alignment accuracy*


Because brazed single-fluted gun drills always have the precision carbide head brazed on to a flexible tube, the tool achieves very accurate aligned holes remaining unaffected by possible concentricity errors.

However, extreme material fluctuations and other influencing factors can impair the alignment accuracy.

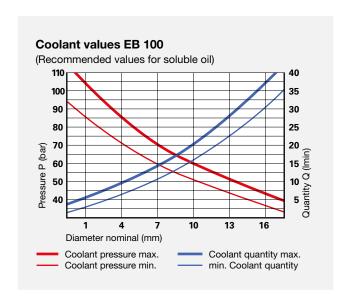
Deviation from concentricity*

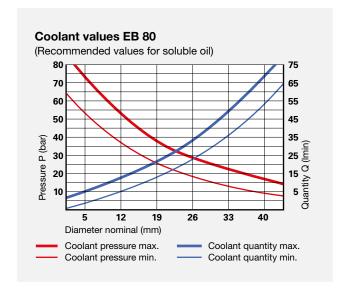

When a hole is produced with, for example, a commercial twist drill, the quality of the point grind affects the concentricity of the hole. An imbalance of forces is created at the cutting edges. With gun drills, these cutting forces are absorbed by the supporting strips, resulting in excellent concentricity.

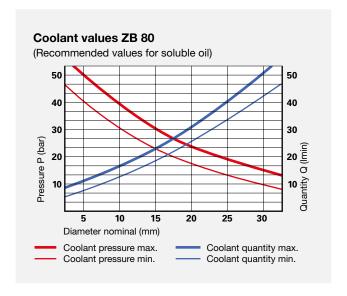


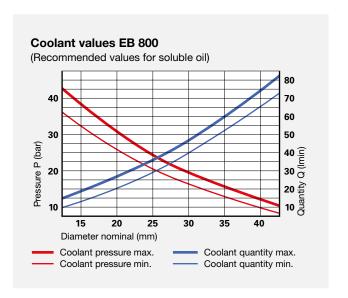
^{*} gun drills with two cutting edges - straight-fluted as well as spiral-fluted - achieve approx. twice of the values stated

Hole straightness/deviation






Coolant values


Please note:

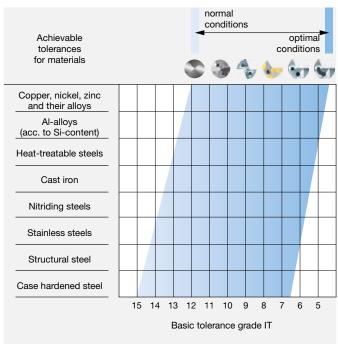
- All gun drills must be applied with internal cooling, either air, water or oil. Without internal cooling the chips cannot be evacuated.
- All gun drills can be applied with oil as the medium for internal cooling. However, in this case a 30% higher pressure is required in order to achieve the same coolant volume.
- When MQL is applied with gun drills an increase in pressure may be necessary for smaller nominal diameters de pendent on the pressure of the MQL system.
- If the cooling lubricant data is insufficient the cutting parameters may be reduced. Pressure boosting systems are also possible.
- With increased gun drill length a pressure increase has to be expected to transport the required coolant volume through the coolant ducts.

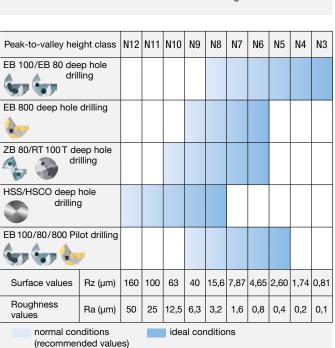
Quality features

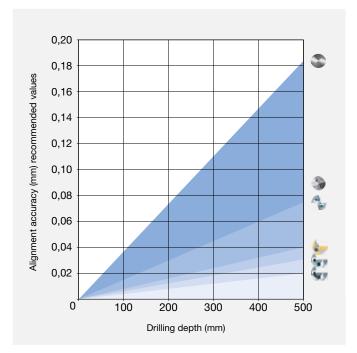
In machining technology, if the drilling depth is 15xD or deeper, this is referred to as deep hole drilling. Today, Gühring's range comprises:

- classical single-fluted gun drills made of solid carbide or with a brazed carbide head
- classical two-fluted gun drills with a brazed carbide head
- replacement system with replaceable solid carbide cutting edges and supporting strips
- spiralled solid carbide or HSS/HSCO deep hole drills

The right tool is selected depending on the type of application and the required quality of the drilled hole.

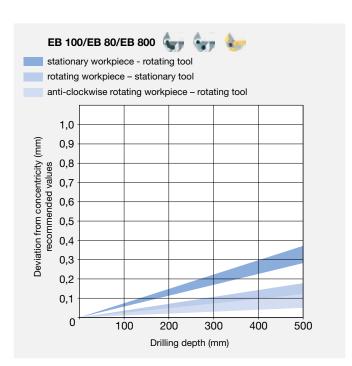

The following diagrams provide guidance on which tool to choose:

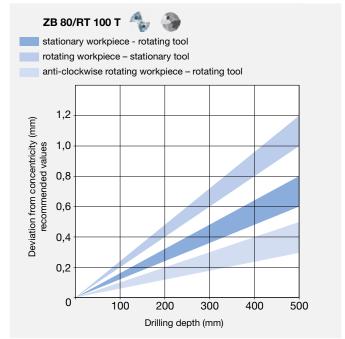

Basic tolerances

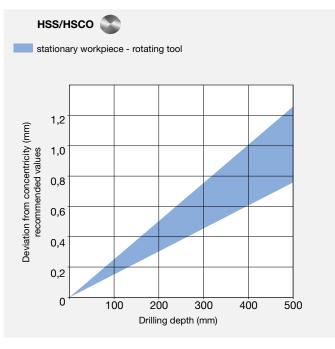

Depending on their shape and design, different types of tools result in different basic tolerances. The single-fluted drill creates extremely precise drilled holes. Under optimum conditions, it is possible to achieve tolerance grades of up to IT5 with a single-fluted gun drill.

Alignment accuracy

The straightness of hole describes a deviation in direction. This is influenced by the centring of the tool during spot drilling and depends on the shape and position of the pilot hole or drill bush. The properties of the material or workpiece as well as the stability of the tool and machine also influence the straightness.

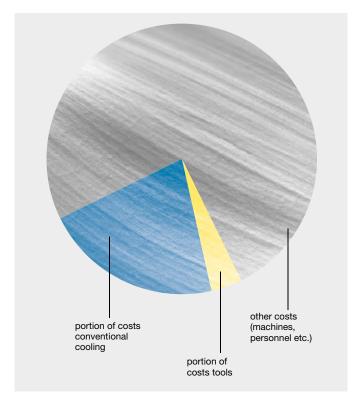

Surface quality


The roughness of the drilled hole is influenced by many factors. The most important of these are the material, the cooling lubricant and the type and geometry of the tool. When drilling with single-fluted drills, the guide pads smooth the bore wall further. This is not the case for drills with several cutting edges. The final quality of the surface is dependent on the surfaces of the tool (e.g. coating) or edge conditions (wear) on the primary and secondary cutting edges.


Deviation from concentricity

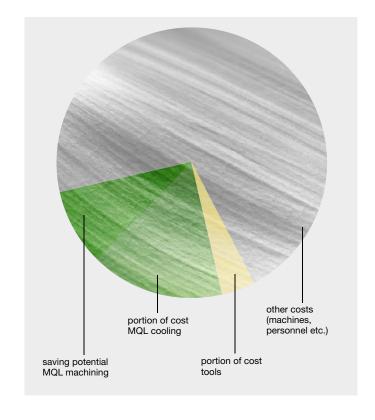
The deviation from concentricity describes a continuous displacement of the tool with increasing drilling depth. This curve is affected not only by the drill's geometric properties, but also by the cutting conditions, the material structure and the temperatures. Optimum results are achieved when machining

with counter-rotating speeds of the workpiece and tool. A single-fluted drill achieves lower deviation from concentricity values than drills with several cutting edges.



MQL Technology

Basics


Minimal Quantity Lubrication (MQL) uses an aerosol comprising oil and air for cooling purposes during machining processes. Its cooling effect is assisted by the chip removal. The frictional heat generated during machining is removed with the chip.

The costs associated with cooling lubrication combined with the machine and tool costs represent a significant proportion of the overall machining process costs. Reducing the required amount of cooling lubricant therefore offers various potential savings and also contributes to environmental and health protection.

The aim of MQL machining

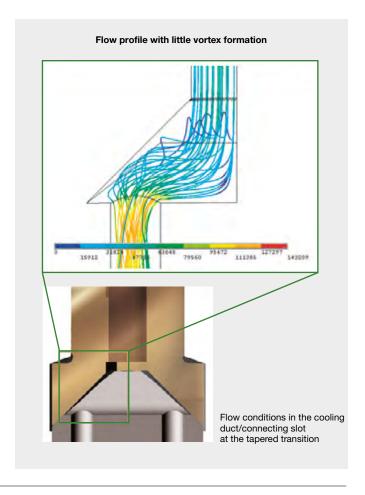
- reduction of thermal stresses at the tool point
- less tool wear/longer service life possible
- effective chip evacuation from deep holes
- reduction of cooling lubricant requirement
- high cooling and lubrication effect especially in deep holes
- reduction in consequential costs such as:
 - reduction in component cleaning costs
 - reduction in cooling lubricant disposal costs
 - reduction in cost of disposal of swarf contaminated with cooling lubricant
- protection of environment and health

A direct comparison of emulsion vs. MQL

	Medium	Purpose	Standard pressure	Usage (during process)
Soluble oil	Soluble oil	Chip removal, cooling and lubrication	approx. 40-80 bar	approx. 800-1.500 l/h
MQL	Oil/air mixture	Chip removal and lubrication	approx. 4-10 bar	Oil: approx. 5-100 ml/h
MQL	Oll/all Mixture	Chip removal and lubrication	арргох. 4-10 раг	Air: approx. 3-6 Nm ³ /h

GUHRING 51

MQL Technology


Perfectly shaped shaft end for reliable MQL transfer

It is important to feed the extremely small amount of oil directly to the point of action. The geometric shape of the shank end plays a vital role here. The tapered shank end designed by Gühring establishes ideal conditions for MQL. In addition, a special connecting slot at the shank end was developed especially for Deep hole drills. This is adapted to the shape of the cooling ducts and ensures optimal distribution into the individual ducts.

Advantages of the tapered shank end:

- a practically positive-fit connection ensures optimal sealing
- minimised dead zones ensure low-resistance flow with no consolidation
- excellent distribution to the individual cooling ducts
- easy handling/cost-effective production
- optimal response times/short time for aerosol delivery

A cool head at all times

With MQL, the process temperature compared to dry machining can be significantly reduced. This results in longer tool life and improved process reliability.

Tool diameter/pressure ratio inlet/outlet pressure

The oil to air ratio of the mixture is set according to the difference between the inlet and outlet pressure. This depends on the process and therefore varies greatly.

The following factors are considered:

- tool (dimensions of the kidney shape/cooling ducts)
- manufacturer of the MQL generator
- manufacturer of the MQL lubricant
- compressor capacity (6 bar standard/10 bar optimal)
- machine factors (connection to the tool)

Application of Gühring coatings

Material	ISO groups	EB/ZB	RT 100 T	HSS
C-steels, Free-cutting steels, Mn-steels	P	TiN Endurum Congressor	Endurum Raptor FIRE	FIRE - -
Steel, low-alloyed	P	bright TiN FIRE	FIRE Endurum Raptor	FIRE TiN -
Steel, alloyed	P	FIRE Signum Congressor	FIRE Signum nanoA	FIRE TiN -
Steel, hardened, <55 HRC	P	Signum FIRE TiAIN	Signum FIRE TiAIN	-
Steel, hardened, 55-65 HRC	P	Signum FIRE TiAIN	Signum FIRE TiAIN	- - -
Steel, stainless and acid-resistant	M	SuperA Sirius Congressor	nanoA Sirius Endurum	Sirius FIRE TiN
Cast iron	K	Signum Endurum FIRE	Signum FIRE nanoA	FIRE - -
Nickel-based alloys (i.e. Inconel)	S	nanoA Sirius Endurum	nanoA Signum FIRE	FIRE - -
Titanium/titanium-alloys	S	bright Zenit nanoA	Zenit nanoA	FIRE -
Cobalt-chromium-alloys	S	nanoA FIRE Congressor	nanoA Signum FIRE	- - -
Precious metals	S	nanoA Carbo	nanoA	-
Aluminium-wrought-alloys	(N)	bright Carbo -	bright Carbo Cristall	bright Carbo -
Aluminium-cast-alloys (<12% Silizium)	(N)	bright Zenit Carbo	bright Zenit Carbo	bright Zenit Carbo
Aluminium-cast-alloys (≥12% Silizium)	(N)	Cristall Signum -	Cristall - -	-
Copper/bronze/brass	N	bright Carbo ICE	ICE Carbo	TiN -
Ceramics	⟨N ∕	Cristall Signum	Cristall	-
Plastics, not reinforced	N	bright	Carbo	-
Plastics, fibre-reinforced	(N)	Cristall Signum	Cristall Signum	Ξ
Graphite	(N)	bright	-	-

Note: The overview shows the general application recommendations for Guhring coatings. Prioritisation is from top to bottom.

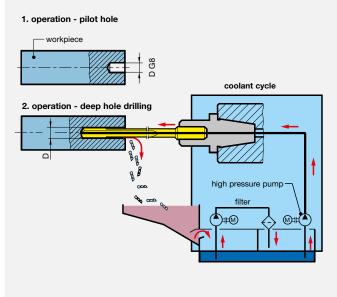
GÜHRING

The drilling process on conventional machines (BAZ)

The work steps for deep hole drilling

- production of pilot hole
- · enter at low revolutions
- · setting of coolant pressure and speed
- continuous drilling to required drilling depth without pecking
- switching off coolant supply after reaching the required hole depth
- · retraction of the tool from the hole

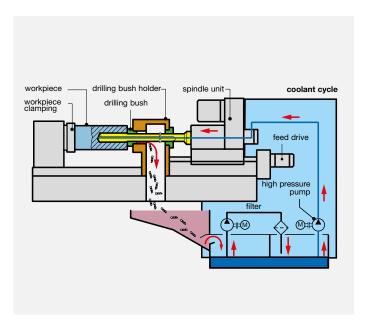
Cutting parameters can be reduced if cooling parameters are insufficient.


Pressure increase systems are also an option.

Procedure

In order to achieve optimal machining results when producing deep holes especially spotting on radii and/or on an uneven surface structure, we recommend the following machining steps:

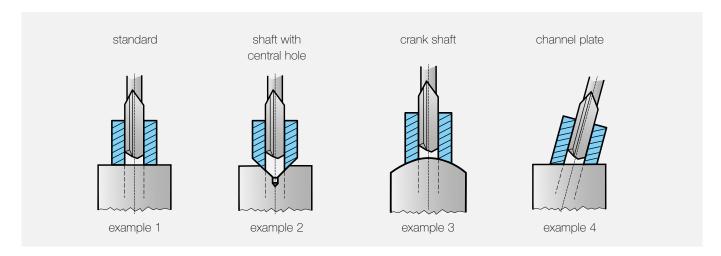
- 1. Initial milling of the surface, e.g. with the RF 100 Diver including centre cut. The surface must be machined at right angles to the entry angle of the drilling operation.
- 2. Drilling of a cylindrical pilot hole, e.g. with the RT 100 U. Thanks to its point angle of 140° and its Ø tolerance m7, this drill is ideally suited for this machining step.
- 3. Drilling into the pilot hole with a speed of approximately 200 rpm and a feed rate of approximately 500 mm/min with anti-clockwise rotation.
- 4. Adjustment of the cooling lubricant pressure and the rotational speed.
- 5. Uninterrupted drilling to the required drilling depth without chip removal. When using deep hole drills with a very large length/diameter ratio (e.g. solid carbide single-fluted drills with flute lengths greater than 160 mm), we recommend drilling with reduced cutting parameters (approx. 75% of the optimal cutting speed) to a drilling depth of around 25 mm.
- 6. For through holes with a straight exit, i.e. 90° , reduce the feed speed v_f to 50% approximately 1 mm before breaking through.
- 7. For through holes with an inclined exit, reduce the feed speed v_f to 40% approximately 1 mm before breaking through.
- 8. After reaching the required drilling depth, switch off the speed and cooling lubricant and retract the drill at a speed of no more than 5,000 mm/min.



The drilling process on deep hole drilling machines

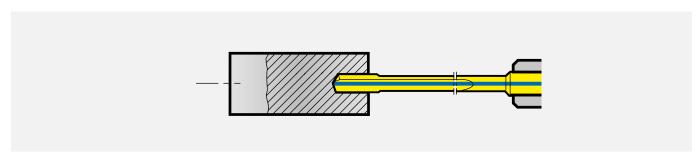
Where mass production, milling of very deep holes and high quality surface finishes are required, deep-hole drilling machines are used. A nearly endless range of drilling depth becomes available. The gun drill is guided by steady rest bushes. The accordion-like movement of the bushes allows a continuous drilling. "Drilling without pecking".

Pilot holes are not needed, thus reducing, time and costs for tool change. Offering a greater drilling depth (up to a couple of meters), and at the same time, an excellent drilling quality. High pressure pumps and a coolant filter system guarantuee maximum process security. The total length of the steady rest bushings and the drill bush support equals the so-called length loss, which is decisive for calculating the length of the tool.


GUHRING 55

Pilot hole and drill bush

Since the single-fluted gun drill is a tool with only one cutting edge and cannot centre itself automatically, the tool must be guided with a drill bush or pilot hole. Self-centering two-fluted drills also have to be guided by drill bushes or pilot holes, however, as they could otherwise start to vibrate.


Example drill bush with art. no. 5747 (HSS) / 5748 (solid carbide)

To take into account when using drill bushes

- The drill bush must be in positive contact with the spot drilling contour.
- There should be as little play as possible between the drill bush and the tool.
- If the deep hole drill has a guide diameter, the drill bush should be at least long enough to guide both head types when spot drilling.
- The condition of the drill bush must be regularly checked to prevent any negative effects on the tool.
- We recommend HSS drill bushes for small series and solid carbide drill bushes for large series.

Example Pilot drilling

Guide values for the pilot hole depth

conv. deep hole drills	Ø nom. follow-on tool								
drilling depth	Ø 0.900-1.799	Ø 1.800-3.999	Ø 4.000-7.999	Ø 8.000-11.999	Ø12.000-52.000				
up to 20xD		2.5xD 2.0xD		1.5xD					
up to 30xD	3.0xD	3.0xD 3.0xD 2.5xD		2.0xD	1.5xD				
up to 40xD		4.0xD	3.0xD	2.5xD					

56

Pilot hole and drill bush

Range of applications for pilot tools

	Diameter range [mm]											
	0.9 1.0 1.4 2.0 3.0 6.0 8.0 11.0 12.0 15.5 16.0 19.5 20.0 25.0 30.0 35.0 40.0 45.0 50.0 52.0											
ExclusiveLine Micro-precision drills	art. 6400 without IC											
	6405 with IC											
RT 100 U	art. no. 2473 without IC											
	art. no. 2479 with IC											
HT 800	art. no. 4111 insert for pilot drilling											
RF 100 P	art. no. 6716 4-fluted without IC											
RF 100 Diver	art. no. 6737 4-fluted without IC											
GV 120	art. no. 659 HSCO without IC											

ExclusiveLine Micro-precision drills

- for pilot holes < Ø 3.000/EB 100, EB 80
- for standard situations/flat spotting surface

RT 100 U

- universal pilot tool Ø3.000-19.500/EB 100, EB 80, ZB 80, EB 800, RT 100 T
- for standard situations/flat spotting surface

HT 800

- insert pilot tool Ø11.000-40.000/EB 100, EB 80, ZB 80, EB 800, RT 100 T
- for standard situations/flat spotting surface

RF 100 P

- milling cutter for high-precision pilot holes Ø1.400-12.000/EB 100, EB 80, ZB 80, EB 800, RT 100 T
- for standard and special situations/flat, angled, cubic or other spot drilling surfaces

RF 100 Diver

- milling cutter for high-precision pilot holes Ø4.000-52.000/EB 100, EB 80, ZB 80, EB 800, RT 100 T
- for standard and special situations/flat, angled, cubic or other spot drilling surfaces

GV 120

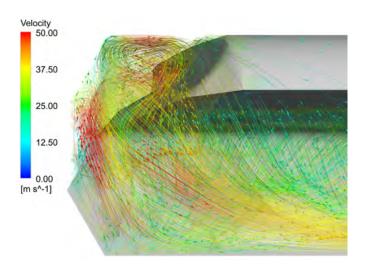
- HSS pilot drills Ø 0.900-15.500/HSS deep hole drills
- for standard situations/flat spotting surface

Please observe the following for pilot holes

- The pilot hole diameter tolerance should be G8 and the nominal tool tolerance always Ø m7.
- If the single-fluted gun drill has a guide diameter, the pilot hole should be at least deep enough to support both head forms when spot drilling.
- Depending on the application, it may be advantageous if the pilot hole has an entry chamfer.
- If there are strict requirements regarding the position and concentricity of the deep drilled hole, then the pilot hole should be milled or be drilled on a lathe.

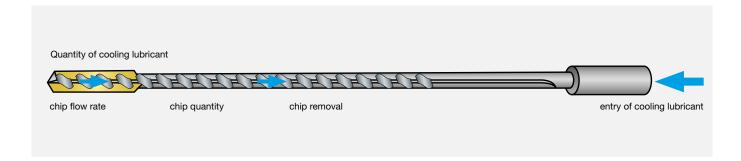
Important:

The quality of the drill bush and of the pilot hole has a very large influence on the deviation from concentricity and the tool life of the follow-on tool.


GUHRING 57

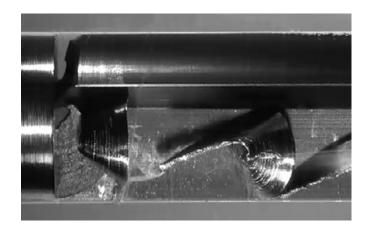
Cooling lubricant

Introduction


The cooling lubricant is one of the most important elements when it comes to drilling holes with an LxD ratio of more than 15xD and for drilling deep holes. The selection of the cooling lubricant, taking into account its properties and performance such as pressure and flow rate, is decisive for process performance and thus also for the quality of the drilled hole. If the cooling lubricant pressure is too high, it can result in waviness and a larger deviation from concentricity.

Function

The cooling lubricant (oil, emulsion, MQL, air) flushes the chips out of the bore and lubricates all the parts of the tool (head and cutting edges) that come into contact with the workpiece. Drilling takes place under high pressure. However, the pressure is "only" the sum of the amount of cooling lubricant produced and existing resistances such as cooling duct cross-section or tool length and chip mass. Due to the amount of cooling lubricant and the resistances mentioned, a flow velocity occurs from a hydraulic point of view. When used correctly, this minimises the time that the chip is in contact with the cutting edge, prevents the drill from


clogging and thus has a direct influence on the machining process. The lubricating properties of the cooling lubricant have a crucial effect on chip formation and the surface result. Appropriate additives such as EP additives (Extreme Pressure) ensure good sliding of the guide pads, which may be exposed to enormous surface pressure and rolling forces.

Filtration

If safe and reliable drilling processes are to be guaranteed, it is imperative to ensure that the cooling lubricant is sufficiently clean with reference to the tool diameter:

- < Ø 2.000 max. 15 μm
- Ø 2.000 up to ≤ Ø 6.000 max. 40 µm
- > Ø 6.000 up to 100 µm

Types of cooling lubricant

Soluble oil

Various types of water-miscible cooling lubricants are available, such as mineral, synthetic or natural compositions, and these, in addition to the selected oil proportion, significantly influence

the drilling process. The ideal oil content for deep hole drilling is between 8 and 12%. Lower values lead to a loss in performance or even to malfunctions.

Emulsion properties*

- At high pressures, EP additives (Extreme Pressure) should be used in the emulsion. Otherwise, foaming and an associated loss of lubrication may occur.
- Emulsions have a lower viscosity than oil, which means that pressures can be reduced by approximately 5% to achieve comparable flushing properties.
- For materials that have a chrome content of more than 12%, a tool life of less than 1.5 m must be expected.

Oil

Like the emulsions, deep drilling oils differ in their mineral, synthetic and natural composition. The higher viscosity of deep drilling oils compared to emulsions partly determines the increased coolant resistance, which in the case of low-viscosity oils leads to high flow rates (small diameters) and in the case of high-viscosity oils to larger hydraulic forces (significant in the case of larger diameters). The viscosity and lubricating properties of oils are strongly dependent on temperature. Overheating >50°C must be avoided in order to be able to drill reliably.

Oil properties*

• $< \emptyset 2 \text{mm } 7-10 \text{mm}^2/\text{s}$

• $> \emptyset$ 2 mm 10-20 mm²/s

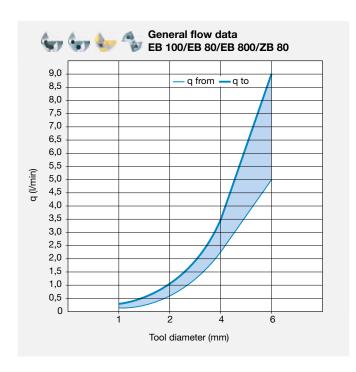
MQL / Dry

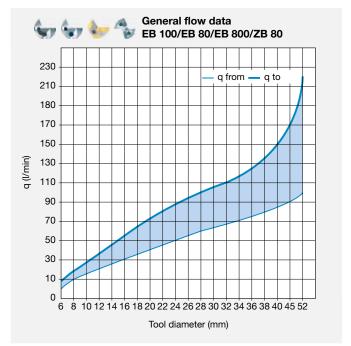
Deep holes can be drilled dry or with MQL. The type of process depends on the material, diameter and drilling depth. The shape, size and mass of the chips are decisive.

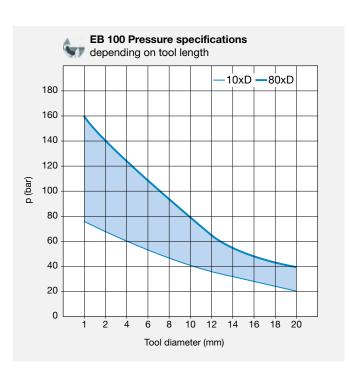
Dry machining is only possible if dust-like chips are produced (e.g. with graphite or HM green compacts).

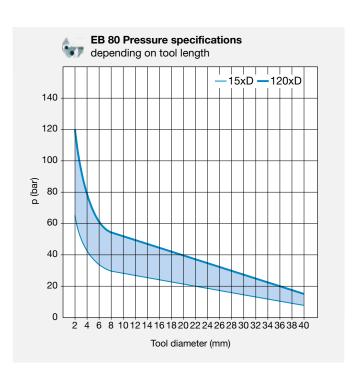
- For MQL 1-channel applications, the length adjustment screw #4937 (see GM 300 catalogue) can be selected.
- For MQL 2-channel applications, the length adjustment screw #4621 (see GM 300 catalogue) can be selected.

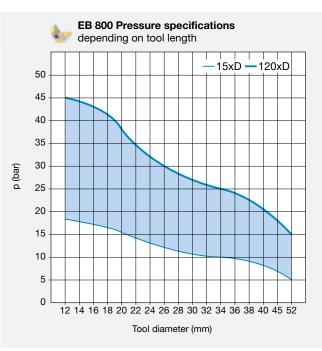
*No liability will be accepted in the case of deviations from the manufacturer's specifications

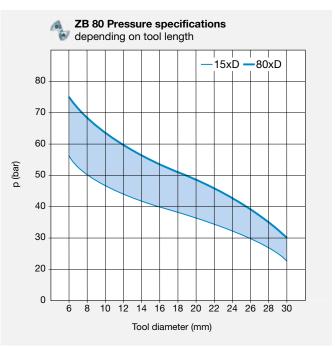



Cooling lubricant data

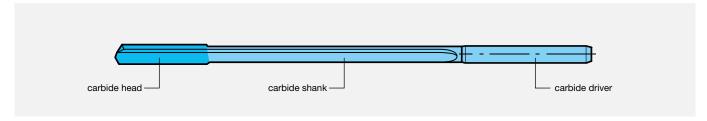

Please note:


- All gun drills must be applied with internal cooling, either air, water or oil. Internal cooling ensures better chip removal.
- All gun drills can be applied with oil as the medium for internal cooling.

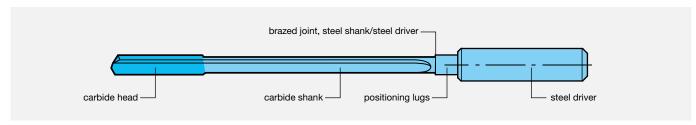

 In this case, however, a higher pressure is required than with emulsions in order to obtain the same amount of coolant.
- When MQL is applied with gun drills an increase in pressure may be necessary for smaller nominal diameters dependent on the pressure of the MQL system.
- If the cooling lubricant data is insufficient the cutting parameters may be reduced. Pressure boosting systems are also possible.
- With increased gun drill length a pressure increase has to be expected to transport the required coolant volume through the coolant ducts.



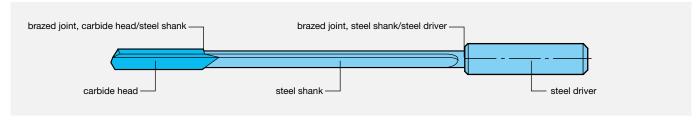
GÜHRING 61

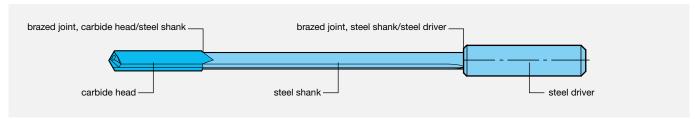


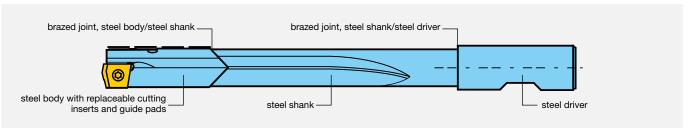
Characteristics


Range of applications

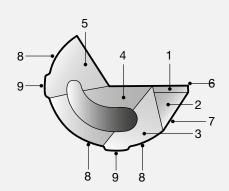
	Diameter range																		
	0.9	1.0	2.0	4.0	6.0	8.0	10.0	12.0	14.0	16.0	18.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	52.0
EB 100 M	max. total length 615 mm																		
EB 100	max. total length 615 mm																		
EB 80	max. total length 3.600 mm																		
ZB 80	max. total length 1.000 mm																		
EB 800	max. total length 3.600 mm																		

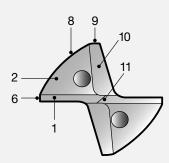

EB 100 M


EB 100


EB 80

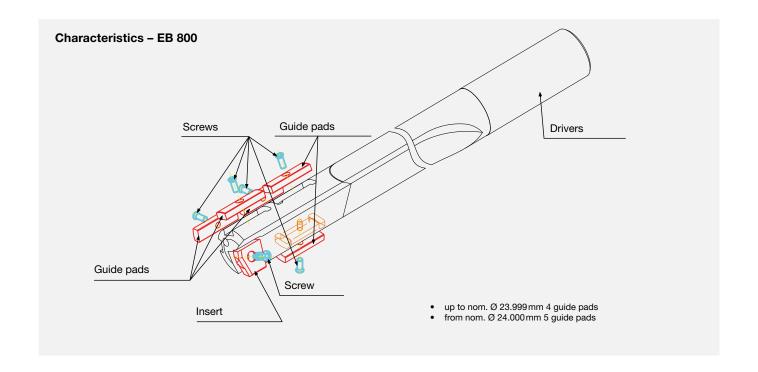
ZB 80


EB 800



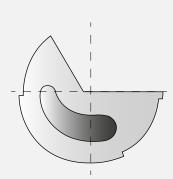
Characteristics

Characteristics - point grind EB

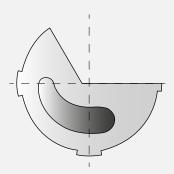


Characteristics - point grind ZB

Explanation:


- 1 Outer cutting edge, 1st flank
- 2 Outer cutting edge, 2nd flank
- 3 Flank, tip
- 4 Inner cutting edge
- 5 Oil chamber
- 6 Secondary cutting edge (circular grinding chamfer)
 7 Primary clearance (oil pocket)
- 8 Body clearance diameter
- 9 Supporting strips (head form)
- 10 Web thinning
- 11 Chisel edge

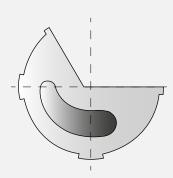
GÜHRING 63


Standard head forms

Head form G

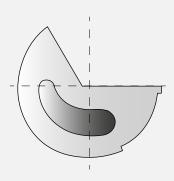
Standard head form. Suitable for most materials and drilling tasks. With this form, the tool diameter cannot be measured once it has been manufactured.

- suitable for most drilling tasks
- for all materials
- low deviation from concentricity
- reduced tendency to jam
- tight hole tolerances

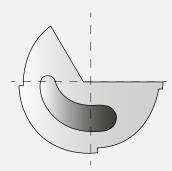

Head form C

This head form is preferred where drilling tolerances are tight with regard to drill hole diameter and surface quality.

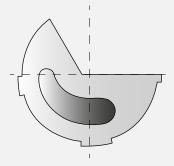
- for all materials
- steel, stainless steel, aluminium
- low deviation from concentricity
- reduced tendency to jam


Special head forms

Head form A


Head form for difficult drilling conditions when spot drilling and cross drilling. Machining of soft materials and/or where the lubrication performance of the cooling lubricant is poor. Used where tight drilling tolerances apply and as a guide part where extra long cutting heads are used.

- aluminium
- copper


Head form D

This head form is used almost exclusively for soft materials such as grey cast iron, graphite etc. - especially in connection with tight drilling tolerances.

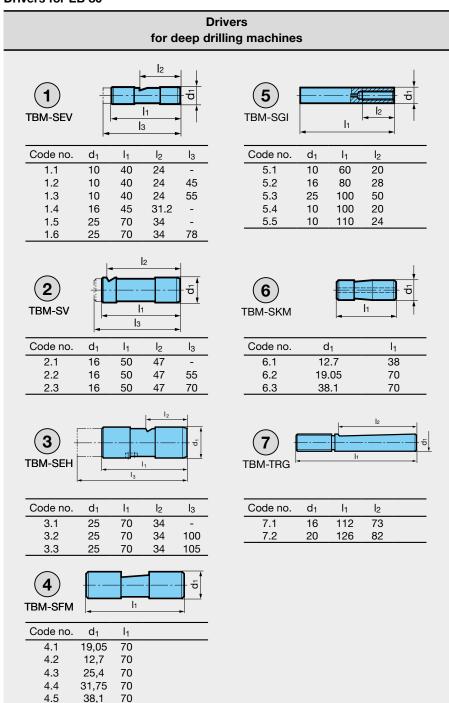
Head form E

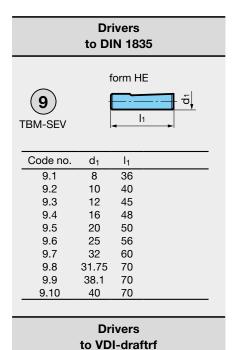
Suitable for all materials, but for less stringent drilling tolerances.

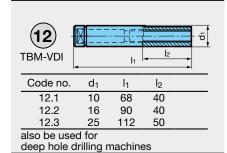
Head form F

Head form for softer materials, lower friction and stable guidance, such as with aluminium.

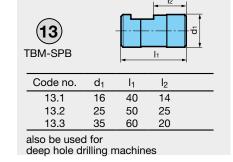
This is just a small selection of our special head forms. Further special head forms for your particular application are available on enquiry.

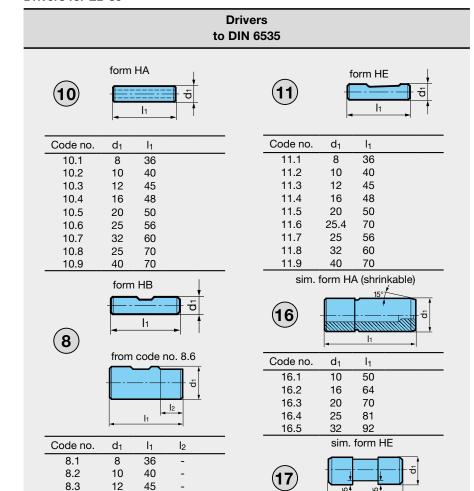

GÜHRING




The range of drivers introduced below is available ex stock. However, it only represents a small selection of drivers from our complete range. We naturally also produce individual drivers of the highest precision to customer drawings.

Attention! EB 100 requires drivers with positioning lugs. Further information on request.


Drivers for EB 80



Drivers to Speed-Bit-System

Drivers for EB 80

2,5

70

70

70

70

Code no.

17.1

17.2

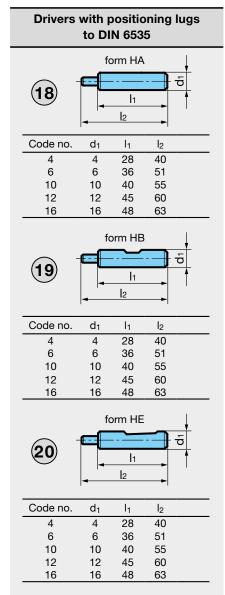
17.3

17.4

also be used for

 d_1

19.05


25.4

31.75

38.1

deep hole drilling machines

Drivers for EB 100

Driver variations to suit gun drill tubes

48

50

56

60

70

80

17

19

19

23

23

Solution for nom.-Ø < driver-Ø (difference must be appr. 6 mm): tube shank installed in driver

8.4

8.5

8.6

8.7

8.8

8.9

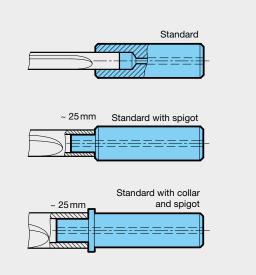
8.10

16

20

25

32


40

50

63

Solution for nom.-Ø ≠ driver-Ø (close to parallel): tube shank installed over spigot

Solution for nom.-Ø > driver-Ø: tube shank installed over spigot, inside-Ø of tube shank >driver-Ø, tube shank fits against collar shoulder.

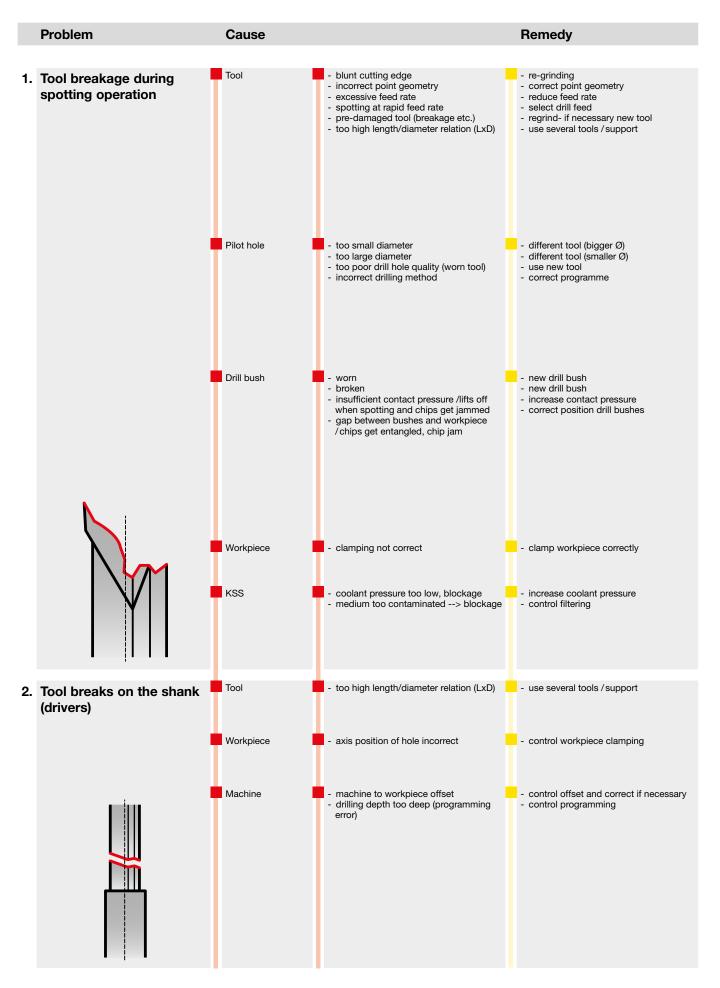
Re-grinding and re-tipping

Even modern high-performance tools will wear at some point due to the enormous stresses they have to withstand. Guhring reproduces the tool performance thanks to professional regrinding.

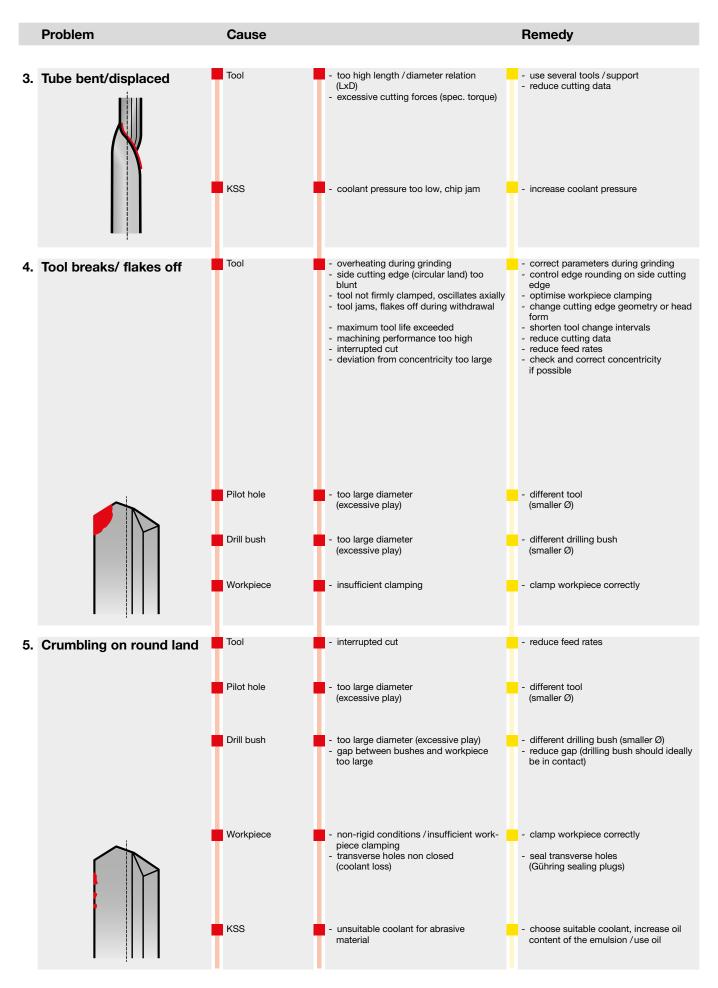
Thanks to the installation of identical machines and equipment in all re-grind centres a universal standard is ensured for gun drills of the highest quality.

Solid carbide deep hole drills or deep hole drills with a brazed head can be re-ground up to 10 times, depending on the head length and wear mark width.

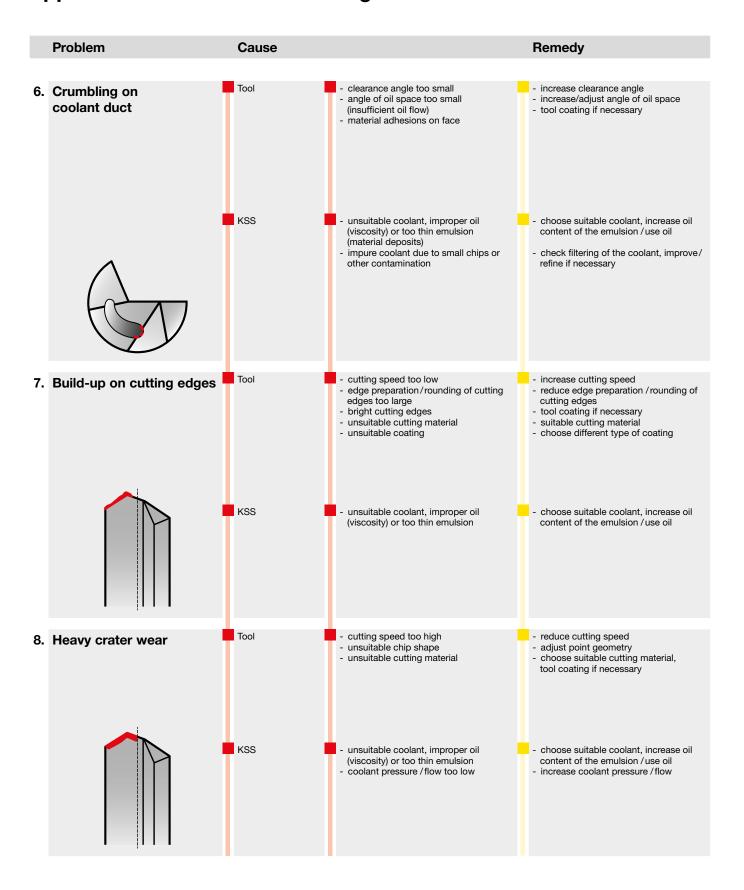
The following points must be taken into account:


- The tool must be properly and cleanly re-ground, so that there are no traces of wear.
- The face of the tool must be smooth and shiny after re-grinding.
- At extra cost, the tools can also be coated after grinding.
- Deep hole drills with a brazed head can be fitted with a new one if the wear is severe or there is damage.
- Deep hole drills with positioning lugs are checked for concentricity after re-grinding and adjusted if necessary.
- Guideline values for the minimum head length when re-grinding, to ensure that the required quality of the drilled hole is achieved:

Diameter range	min. head length				
Ø0.900-Ø1.999	5-7mm				
Ø2.000-Ø3.999	8-10mm				
Ø4.000-Ø16.999	10 - 14 mm				
Ø17.000 - Ø25.999	14 - 16 mm				
Ø26.000-Ø40.000	16-18 mm				

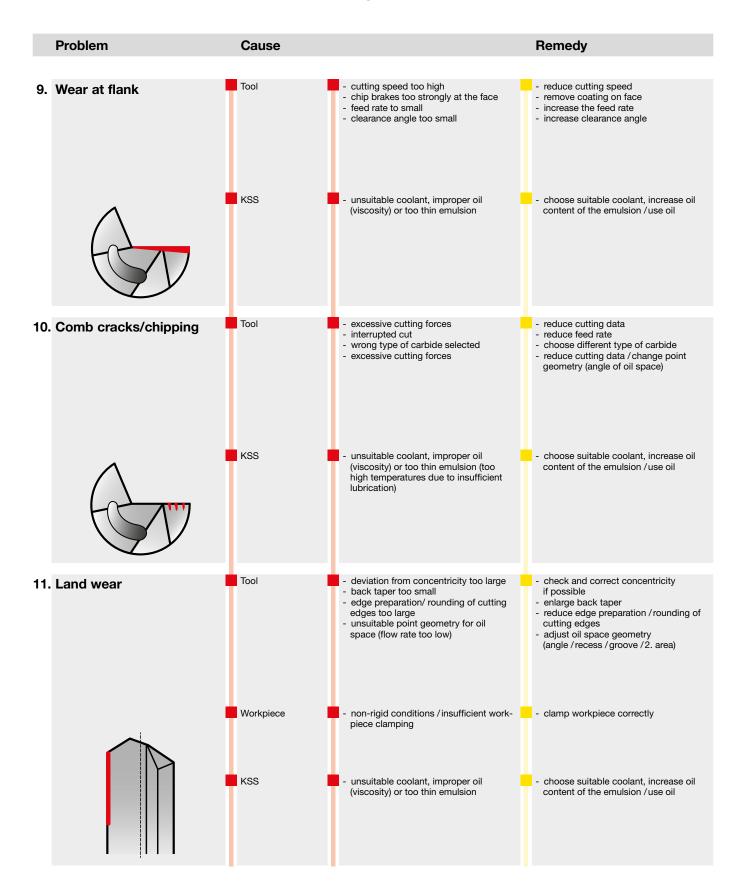

Application hints/Troubleshooting

GUHRING



Application hints/Troubleshooting

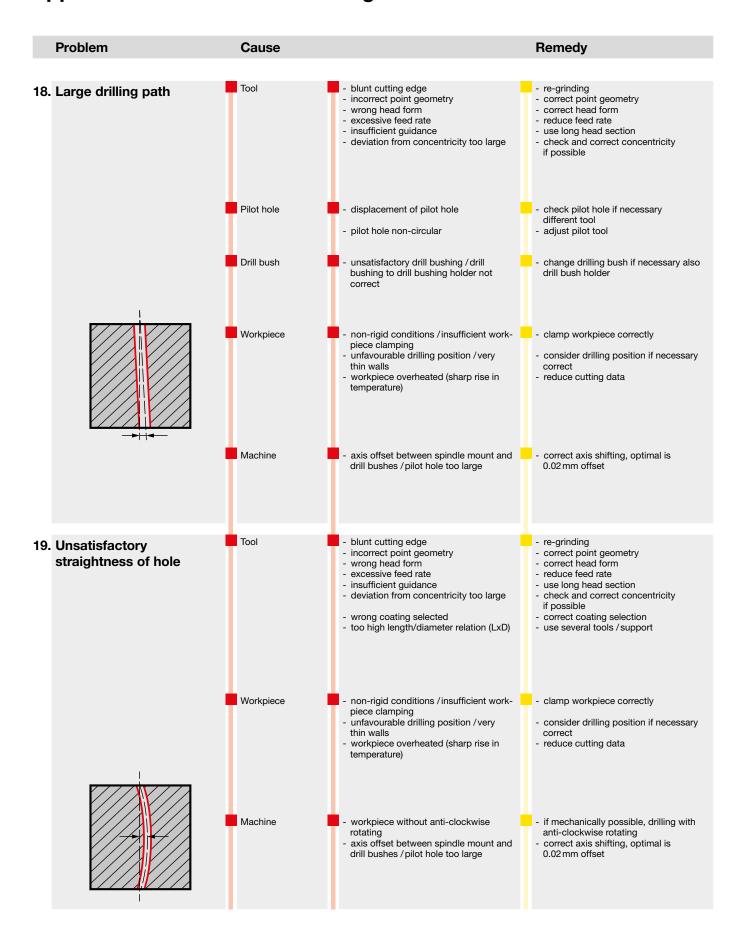
Application hints/Troubleshooting



GUHRING 71

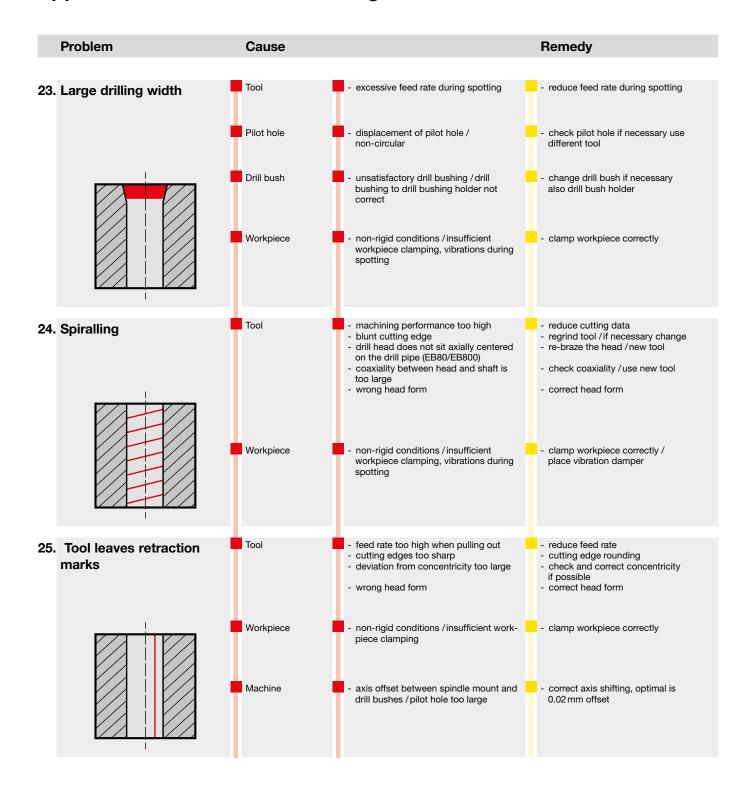
72

Application hints/Troubleshooting



Problem	Cause		Remedy
12. Wear on head form	Tool	- deviation from concentricity too large - interrupted cut - wrong type of carbide selected - back taper too small - wrong coating selected	- check and correct concentricity if possible - reduce feed rates - correct carbide selection - enlarge back taper - correct coating selection
	Workpiece	non-rigid conditions /insufficient work- piece clamping	- clamp workpiece correctly
	KSS KSS	unsuitable coolant for abrasive material	- choose suitable coolant, increase oil content of the emulsion / use oil
13. Large drill burr	Tool	- excessive feed rate during spotting - maximum tool life exceeded (tool is blunt) - edge preparation / rounding of cutting edges too large - clearance angle too small	- reduce feed rate during spotting - shorten tool change intervals - reduce edge preparation / rounding of cutting edges - increase clearance angle
	Pilot hole	- too large diameter (excessive play)	- different tool (smaller Ø)
	Drill bush	- too large diameter (excessive play)	- different drilling bush (smaller Ø)
14. Large drill burr	Tool	excessive feed rate during drilling maximum tool life exceeded (tool is blunt) edge preparation / rounding of cutting edges too large	- reduce feed rate during drilling - shorten tool change intervals - reduce edge preparation / rounding of cutting edges

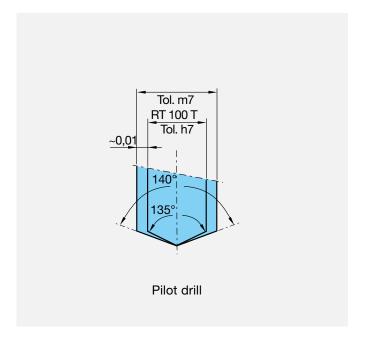
Problem	Cause	Remedy
15. Tool drills in steps	Tool	- drill head does not sit axially centered on the drill pipe (eb 80/eb 800) - coaxiality between head and shaft is too large
	Machine	- axis offset between spindle mount and drill bushes or pilot hole too large - correct axis shifting, optimal is 0.02 mm offset
	■ KSS	- coolant pressure too high - reduce coolant pressure
16. Unsatisfactory surface quality	Tool	- cutting edge broken - chamfer of side cutting edge (circular land) too large - weakly formed warping chamfer - too little pressure on the rear guide pads - deviation from concentricity too large - wrong coating selected - regrind the tool - correct tool design - optimise warping chamfer - increase pressure by point geometry or by peeling chamfer/corner radius - check and correct concentricity if possible - correct coating selection
Ra	Workpiece KSS	- non-rigid conditions / insufficient work- piece clamping - coolant type / emulsion not sufficient - coolant qauntity not sufficient - increase coolant quantity (volume/pressure)
17. Centre offset	Tool	- deviation from concentricity too large - check and correct concentricity if possible
	Pilot hole	- spotting on transverse area - wrong tool design - apply pilot hole with milling cutter - optimize LxD / check tool-∅
	Drill bush	- spotting on transverse area - worn drilling bush (inner Ø too large) - use corrected drill bush - use new drill bush
Ø	Workpiece	- non-rigid conditions / insufficient work clamp workpiece correctly piece clamping
	Machine	- axis offset between spindle mount and drill bushes / pilot hole too large - correct axis shifting, optimal is 0.02 mm offset



GUHRING 75

	Problem	Cause		Remedy
20.	Hole too large	Tool	too much pressure on the side cutting edge deviation from concentricity too large	 change point geometry/ reduce pressure on the side cutting edge (change D/4 to D/3) check and correct concentricity if possible
	Ø> Ø	KSS	- coolant pressure too high	- reduce coolant pressure
21.	Hole too tight	Tool	- too little pressure on the side cutting edge - wrong head form - tool reground too much (often) (back taper)	- change point geometry /increase pressure on side cutting edge (change D/3 to D/4) - correct head form (form "C") - use new tool
22.	Chip jam/ tool is blocked	Tool	- ratio of cutting speed to feed rate does not fit - unsuitable point geometrie - flow chips - flow chips with coated tools - unsuitable point geometry for oil space (flow rate too low) - tool clamping leaking (coolant loss)	- correct/adjust ratio of cutting speed to feed - adjust point geometry to favor chip breaking - if necessary program Hiccup/Pecking - remove coating on face - adjust oil space geometry angle / recess / groove /2. area - optimise workpiece clamping
		KSS	- coolant qauntity not sufficient	- increase coolant quantity (volume / pressure))

Application recommendations

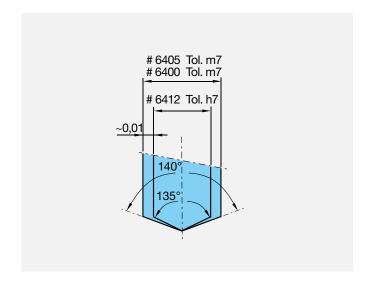

The sequence of operations for deep hole drilling

- production of pilot hole (L=1,5×D bis L=3,0xD, tolerance G8)
- · switching on coolant supply
- enter at revolutions of approx. 300 U/min, feed rate approx. 500 mm/min
- · setting of revolutions and feed rate
- uninterrupted drilling to required drilling depth without wood pecking
- reducing revolutions to approx. 300 U/min
- withdrawal with max. 5,000 mm/min and rotating spindle

Procedure

In order to achieve optimal machining results when producing deep holes especially spotting on radii or on an uneven surface structure, we recommend the following machining steps:

- 1. Initial milling of surface, i.e. with our centre cutting Ratio end mill RF100 Diver. The surface must be machined at right angles to the entry angle of the drilling operation.
- 2. Producing of a cylindrical pilot hole, with a drilling depth of at least 1.5xD to 3xD (tolerance G8). For this operation we recommend our Ratio drills. Thanks to a 140° point angle and a m7 tolerance on diameter these Ratio drills are especially suitable for this machining task.
- 3. Setting of coolant pressure (see diagram "RT 100 T Pressure specifications") and switching on coolant supply.
- 4. Entry in the pilot hole at a speed of approx. 300 U/min and with a feed rate of approx. 500 mm/min.
- 5. Setting of speed and feed rate.
- 6. Uninterrupted drilling to required drilling depth without wood pecking.
- 7. For through holes with plain i.e. 90° exit, reduce feed rate v_f to 50% approx. 1 mm prior to break-through. For through holes with oblique exit, reduce the feed rate v_f to 40% approx. 1 mm prior to break-through.
- 8. For through holes, reduce the speed to approx. 300 rpm after the final depth has been reached, or for blind holes, withdraw 1 mm from the bottom of the hole and then reduce the speed to approx. 300 rpm.
- 9. Withdrawal with max. 5,000 mm/min and rotating spindle.


Application recommendations

Solid carbide micro-precision drills

Pilot drilling

For the application of solid carbide micro-precision drills 15xD we recommend a pilot hole 1xD up to 2xD depth. For this pilot hole, the solid carbide micro-precision drill 4xD is

For this pilot hole, the solid carbide micro-precision drill 4xD is optimally suitable. His point angle and his diameter tolerance are perfectly adapted.

Filter quality

When applying solid carbide micro-precision drills we recommend constant monitoring of the lubricant's filter quality due to the extremely small coolant duct diameters, for example with our check instrument CC 3000 (fig. right).

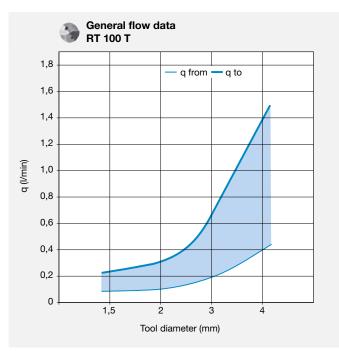
General hints:

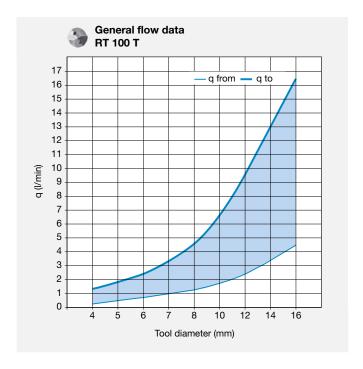
Play-free spindles, alignment accurate tool holders. We recommend the use of hydraulic expansion chucks or shrink chucks.

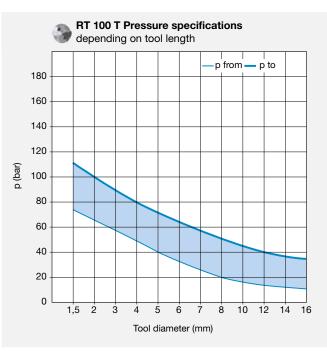
Notes regarding cooling:

We recommend using an emulsion for cooling lubrication: lubricant pressure at least 40 bar.

GUHRING 79




Coolant values


Please note:

- All gun drills must be applied with internal cooling, either air, soluble oil or oil. Without internal cooling the chips cannot be evacuated.
- All gun drills can be applied with oil as the medium for internal cooling.

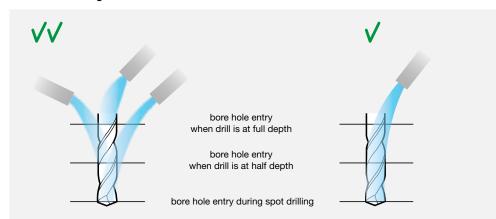
 In this case, however, a higher pressure is required than with emulsions in order to obtain the same amount of coolant.
- When MQL is applied with gun drills an increase in pressure may be necessary for smaller nominal diameters dependent on the pressure of the MQL system.
- If the cooling lubricant data is insufficient the cutting parameters may be reduced. Pressure boosting systems are also possible.
- With increased gun drill length a pressure increase has to be expected to transport the required coolant volume through the coolant ducts.

Application recommendations

Pilot holes for drill lengths greater than DIN 1869

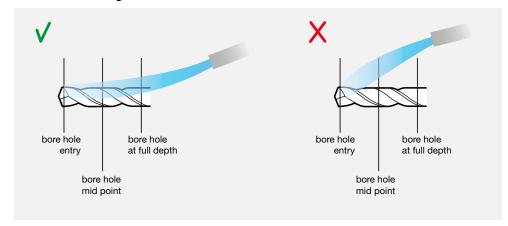
Before using the extra long HSS/HSCO drills according to DIN 1869 and factory standard, we recommend drilling a pilot hole.

The following must be observed:


- The depth of the pilot hole should be 2-3xD.
- · The point angle of the pilot drill should be at least as large or larger than the point angle of the deep hole drill.
- The diameter of the pilot drill should be equal to or up to 0.1 mm larger than the diameter of the deep hole drill.
- We recommend the use of an extra short twist drill according to DIN 1897 to drill the pilot hole, or alternatively
 a short twist drill according to DIN 338.

Procedure

- The cooling lubricant supply must be adjusted in such a way that the entire cutting section of the deep hole drill is supplied with coolant.
- The approach to the component should be made with reduced rapid traverse, to avoid vibration of the deep hole drill
- When introducing the deep hole drill into the pilot hole, we recommend reducing the rotational speed and feed speed by 50%.
- As soon as the deep hole drill has reached 2/3 of the pilot hole depth, the rotational speed should be increased to the full working speed.
- Depending on the machining situation (vertical/horizontal machining) and the material to be machined, the chip removal cycles should be selected to allow optimum chip removal and avoid chip jams.
- The chip removal cycles can be run at working rotational speed and with an increased feed rate, making sure that a part of the deep hole drill at least 1xD always remains in the hole to keep it guided. Afterwards it is possible to advance to a depth of 2 mm before the previously drilled depth with the increased feed rate and the working rotational speed. The next drilling cycle is then started with the working feed rate and the working rotational speed.
- After the full drilling depth has been reached, it is possible to withdraw from the hole at the working speed and increased feed rate, provided that the hole was drilled with chip removal cycles.
 - If drilling was carried out without chip removal cycles, we recommend reducing the rotational speed to 25% of the working speed and slightly increasing the feed rate when withdrawing from the full drilling depth.



Vertical machining

Supplying the coolant via several nozzles is the ideal way to ensure constant cooling and lubrication.

Horizontal machining

If there is only one coolant nozzle, it is recommended to set the nozzle so that the drill still receives coolant when drilling to depth.

The new material abbreviations (selection)

Mat. nos.	Abbreviation old	Abbreviation old	Mat. nos.	Abbreviation old	Abbreviation old	Mat. nos.	Abbreviation old	Abbreviation old	Mat. nos.	Abbreviation old	Abbreviation old
0.6010	GG10	EN-GJL-100	1.0728	60 S 20	-	1.4436	X5CrNiMo 17 13 3	X3CrNiMo17-13-3	1.7043	-	38Cr4
0.6020	GG20	EN-GJL-200	1.0736	9 SMn 36	11SMn37	1.4438	X2CrNiMo 18 16 4	X2CrNiMo18-15-4	1.7147	20 MnCr 5	20MnCr5
0.6025	GG25	EN-GJL-250	1.0737	9 SMnPb 36	11SMnPb37	1.4460	X4CrNiMo 2752	X3CrNiMoN27-5-2	1.7149	20 MnCrS 5	20MnCrS5
0.6035	GG35	EN-GJL-350	1.0756	35 SPb 20	35SPb20	1.4462	X2CrNiMoN 2253	X2CrNiMoN22-5-3	1.7176	55 Cr 3	55Cr3
0.7050	GGG50	EN-GJS-500-7	1.0757	45 SPb 20	46SPb20	1.4509	X6CrTiNb 18	X2CrTiNb18	1.7182	27 MnCrB 5 2	27MnCrB5-2
0.7070	GGG70	EN-GJS-700-2	1.0760	_	38SMn26	1.4510	X6CrTi 17	X3CrTi17	1.7185	33 MnCrB 5 2	33MnCrB5-2
0.8035	GTW35	EN-GJMW-350-4	1.0761	_	38SMnPb26	1.4511	X6CrNb 17	X3CrNb17	1.7189	39 MnCrB 6 2	39MnCrB6-2
0.8155	GTS55	EN-GJMB-550-4	1.0762	_	44SMn28	1.4512	X6CrTi 12	X2CrTi12	1.7213	25 CrMoS 4	25CrMoS4
0.8170	GTS70	EN-GJMB-700-2	1.0763	_	44SMnPb28	1.4520	X1CrTi 15	X2CrTi17	1.7218	25 CrMo 4	25CrMo4
1.0022	St 01Z	_	1.0873	_	DC06 [Fe P06]	1.4521	X2CrMoTi 18 2	X2CrMoTi18-2	1.7219	_	26CrMo4-2
1.0035	St 33	S185	1.1103	EStE 255	S255NL1	1.4522	X2CrMoNb 18 2	X2CrMoNb18-2	1.7220	34 CrMo 4	34CrMo4
1.0039	St 37 -2	S235JRH	1.1105	EStE 315	S315NL1	1.4532	X7CrNiMoAl 15 7	X8CrNiMoAl15-7-2	1.7225	42 CrMo 4	42CrMo4
1.0044	St 44 -2	S275JR	1.1121	Ck 10	C10E	1.4541	X6CrNiTi18 10	X6CrNiTi18-10	1.7226	34 CrMoS 4	34CrMoS4
1.0050	St 50 -2	E295	1.1141	Ck15	C15E	1.4542	X5CrNiCuNb 17 4	X5CrNiCuNb16-4	1.7227	42 CrMoS 4	42CrMoS4
1.0060	St 60 -2	E335	1.1151	Ck 22	C22E	1.4550	X6CrNiNb 18 10	X6CrNiNb18-10	1.7228	50 CrMo 4	50CrMo4
1.0070	St 70 –2	E360	1.1158	Ck 25	C25E	1.4558	X2NiCrAlTi 32 20	X2NiCrAlTi32-20	1.7264	20 CrMo 5	20CrMo5
1.0114	St 37 –3U	S235J0	1.1170	28 Mn 6	28Mn6	1.4567	X3CrNiCu 18 9 X	X3CrNiCu18-9-4	1.7321	20 MoCr 4	20MoCr4
1.0226	St 02Z	DX51D	1.1178	Ck 30	C30E	1.4568	X7CrNiAl 17 7	X7CrNiAl17-7	1.7323	20 MoCrS 4	20MoCrS4
1.0242	StE 250 -2Z	S250GD	1.1181	Ck 35	C35E	1.4571	_	X6CrNiMoTi17-12-2	1.7333	22 CrMoS 3 5	22CrMoS3-5
1.0244	StE 280 -2Z	S280GD	1.1186	Ck 40	C40E	1.4577	X3CrNiMoTi 25 25	X3CrNiMoTi25-25	1.7335	13 CrMo 4 4	13CrMo4-5
1.0250	StE 320 -3Z	S320GD	1.1191	Ck 45	C40E C45E	1.4577	X1CrMoTi 29 4	X2CrMoTi29-4	1.7362	12 CrMo 19 5	12CrMo19-5
1.0250	C 10	-	1.1203	Ck 45 Ck 55	C55E	1.4592	X10CrAl 7	X10CrAlSi7	1.7380	10 CrMo 9 10	10CrMo9-10
1.0301	C 10 Pb		1.1203	Ck 55	C50E	1.4713	X10CrAl 13	X10CrAlSi13	1.7383	_	11CrMo9-10
		DY54D	1.1206		C60E	1.4742	X10CrAI 13 X10CrAI 18		1.7779		20CrMoV13-5-5
1.0306	St 06 Z	DX54D		Ck 60				X10CrAISi18		50 CN/ 4	
1.0312	St 15	DC05 [Fe P05]	1.1241	Cm 50	C50R	1.4762	X10CrAl 24 X20CrNiSi 25 4	X10CrAlSi25	1.8159	50 CrV 4 34 CrAl 6	51CrV4
1.0319	RRStE 210.7	L210GA	1.1750	C 75 W 102 Cr 6	C75W	1.4821		X20CrNiSi25-4	1.8504		34CrAl6
1.0322	-	DX56D	1.2067	102 Cr 6	102Cr6 X210Cr12	1.4828	X15CrNiSi 20 12	X15CrNiSi20-12 X7CrNi23-12	1.8519	31 CrMoV 9	31CrMoV9
1.0330	St 12 [St 2]	DC01 [Fe P01]	1.2080	-		1.4833	X7CrNi 23 14		1.8550	34 CrAINi 7	34CrAlNi7
1.0333	USt 13	-	1.2083	_	X42Cr13	1.4841	X15CrNiSi 25 20	X15CrNiSi25-21	1.8807	13 MnNiMoV 5 4	13MnNiMoV5-4
1.0338	St 14 [St 4]	DC04 [Fe P04]	1.2419	_	105WCr6	1.4845	X12CrNi 25 21	X12CrNi25-21	1.8812	18 MnMoV 5 2	18MnMoV5-2
1.0345	HI	P235GH	1.2767	_	X45NiCrMo4	1.4864	X12NiCrSi 36 16	X12NiCrSi35-16	1.8815	18 MnMoV 6 3	18MnMoV6-3
1.0347	RRSt 13 [RRSt 3]	DC03 [Fe P03]	1.3243	S6-5-2-5	S 6-5-2-5	1.4878	X12CrNiTi18 9	X10CrNiTi18-10	1.8821	StE 355 TM	P355M
1.0348	UHI	P195GH	1.3343	S6-5-2	S 6-5-2	1.4903	-	X10CrMoVNb9-1	1.8824	StE 420 TM	P420M
1.0350	St 03Z	DX52D	1.3344	S6-5-3	S 6-5-3	1.5026	55 Si 7	55Si7	1.8826	StE 460 TM	P460M
1.0355	St 05Z	DX53D	1.4000	X6Cr 13	X6Cr13	1.5131	50 MnSi 4	50MnSi4	1.8828	EStE 420 TM	P420ML2
1.0356	TTSt 35 N	P215NL	1.4002	X6CrAl 13	X6CrAl13	1.5415	15 Mo 3	16Mo3	1.8831	EStE 460 TM	P460ML2
1.0358	St 05 Z	-	1.4003	X2Cr 11	X2CrNi12	1.5530	21 MnB 5	20MnB5	1.8832	TStE 355 TM	P355ML1
1.0401	C 15	-	1.4005	-	X12CrS13	1.5531	30 MnB 5	30MnB5	1.8835	TStE 420 TM	P420ML1
1.0402	C 22	C22	1.4006	X10Cr 13	X12Cr13	1.5532	38 MnB 5	38MnB5	1.8837	TStE 460 TM	P460ML1
1.0403	C 15 Pb	-	1.4016	X6Cr 17	X6Cr17	1.5637	10 Ni 14	12Ni14	1.8879	StE	P690Q
1.0406	C 25	C25	1.4021	X20Cr 13	X20Cr13	1.5662	-	X11CrMo5+I	1.8880	WStE	P690QH
1.0419	St 52.0	L355	1.4028	X30Cr 13	X30Cr13	1.5680	-	X12Ni5	1.8881	TStE	P690QL1
1.0424	St 45.8 (ersetzt)	P265	1.4031	X38Cr 13	X38Cr13	1.5710	36 NiCr 6	36NiCr6	1.8882	10 MnTi 3	10MnTi3
1.0424	St 42.8 (ersetzt)	P265	1.4034	X46Cr 13	X46Cr13	1.5715	-	16NiCrS4	1.8888	EStE	P690QL2
1.0425	H2	P265GH	1.4037	X65Cr13	X65Cr13	1.5752		15NiCr13	1.8900	StE 380	S380N
1.0429	StE 290.7 TM	L290MB	1.4057	X20CrNi 17 2	X17CrNi16-2	1.6210	15 MnNi 6 3	15MnNi6-3	1.8901	StE 460	S460N
1.0457	StE 240.7	L245NB		X12CrMoS 17	X14CrMoS17		16 MnNi 6 3	16MnNi6-3		StE 420	S420N
1.0459	RRStE 240.7	L245GA	1.4105	X4CrMoS 18	X6CrMoS17	1.6310		20MnMoNi5-5	1.8903	TStE 460	S460NL
1.0461	StE 255	S255N	1.4109	X65CrMo 14	X70CrMo15	1.6311	20 MnMoNi 4 5	20MnMoNi4-5	1.8905	StE 460	P460N
1.0473	19 Mn 6	P355GH	1.4110	X55CrMo 14	X55CrMo14	1.6341	11 NiMoV 5 3	11NiMoV5-3	1.8907	StE 500	S500N
1.0481	17 Mn 4	P295GH		X90CrMoV 18	X90CrMoV18	1.6368	15 NiCuMoNb 5	15NiCuMoNb5	1.8910	TStE 380	S380NL
1.0484	StE 290.7	L290NB	1.4113	X6CrMo 17 1	X6CrMo17-1	1.6511	36 CrNiMo 4	36CrNiMo4	1.8911	EStE 380	S380NL1
1.0486	StE 285	P275N	1.4116	X45CrMoV 15	X50CrMoV15	1.6523		21NiCrMo2-2	1.8912		S420NL
1.0501	C 35	C35	1.4120	X20CrMo 13	X20CrMo13	1.6526		21NiCrMoS2-2	1.8913		S420NL1
1.0503	C 45	C45		X35CrMo 17	X39CrMo17-1	1.6580		30CrNiMo8	1.8915		P460NL1
1.0505	StE 315	P315N	1.4125	X105CrMo 17	X105CrMo17	1.6582		34CrNiMo6	1.8917	WStE 500	S500NL
1.0511	C 40	C40	1.4301	X5CrNi 18 10	X5CrNi18-10	1.6587		18CrNiMo7-6	1.8918		P460NL2
1.0528	C 30	C30	1.4303	X5CrNi 18 12	X4CrNi18-12	1.7003		38Cr2	1.8919	EStE 500	S500NL1
1.0529	StE 350 -3Z	S350GD	1.4305	X10CrNiS 18 9	X8CrNiS18-9	1.7006		46Cr2	1.8930		P380NH
1.0535	C 55	C55	1.4306	X2CrNi 19 11	X2CrNi19-11	1.7016		17Cr3	1.8932	WStE 420	P420NH
1.0539	StE 355N	S355NH	1.4310	X12CrNi 17 7	X10CrNi18-8	1.7023		38CrS2	1.8935		P460NH
1.0540	C 50	C50	1.4311	X2CrNiN 18 10	X2CrNiN18-10	1.7025	46 CrS 2	46CrS2	1.8937	TStE 500	P500NH
1.0547	St 52 –3U	S355J0H	1.4313	X4CrNi 13 4	X3CrNiMo13-4	1.7030	28 Cr 4	28Cr4	1.8972	StE 415.7	L415NB
1.0582	StE 360.7	L360NB	1.4318	X2CrNiN 18 7	X2CrNiN18-7	1.7033	34 Cr 4	34Cr4	1.8973	StE 415.7 TM	L415MB
1.0601	C 60	C60	1.4335	X1CrNi 25 21	X1CrNi25-21	1.7034	37 Cr 4	37Cr4	1.8975	StE 445.7 TM	L450MB
1.0710	15 S 10	-	1.4361	X1CrNiSi 18 15	X1CrNiSi18-15-4	1.7035	41 Cr 4	41Cr4	1.8977	StE 480.7 TM	L485MB
1.0715	9 SMn 28	11SMn30	1.4362	X2CrNiN 23 4	X2CrNiN23-4	1.7036	28 CrS 4	28CrS4	1.8978	StE 550.7 TM	L555MB
	9 SMnPb 28	11SMnPb30	1.4401	X5CrNiMo 17 122	X5CrNiMo17-12-2	1.7037		34CrS4			
1.0721	10 S 20	10S20	1.4404	X2CrNiMo 17 132	X2CrNiMo17-12-2	1.7038		37CrS4			
1.0722	10 S Pb 20	10SPb20	1.4410	X10CrNiMo 18 9	X2CrNiMoN25-7-4	1.7039		41CrS4			
1.0726	35 S 20	35S20	1.4418	X4CrNiMo 16 5	X4CrNiMo16-5-1	1.7131		16MnCr5			
1.0727	45 S 20	46S20	1.4435	X2CrNiMo 18143	X2CrNiMo18-14-3	1.7139	16 MnCrS 5	16MnCrS5			

Conversion table inch - millimetre from size 97 to 1 inch

Size (Inch)	mm	Part of inch (decimal)	Size (Inch)	mm	Part of inch (decimal)	Size (Inch)	mm	Part of inch (decimal)	Size (Inch)	mm	Part of inch (decimal)
-	0.10	0.0039	51	1.70	0.0670	4	5.31	0.2090	-	14.00	0.5512
97	0.15	0.0059		1.75	0.0689	3	5.41	0.213	9/16	14.29	0.5625
96	0.16	0.0063	50	1.78	0.0700	7/00	5.50	0.2165	07/04	14.50	0.5709
95 94	0.17 0.18	0.0067 0.0071	49	1.80 1.85	0.0709 0.0730	7/32	5.56 5.61	0.2188 0.221	37/64	14.68 15.00	0.5781 0.5906
93	0.18	0.0071	49	1.90	0.0730	1	5.79	0.221	19/32	15.08	0.5938
92	0.20	0.0079	48	1.93	0.0760	A	5.94	0.234	39/64	15.48	0.6094
91	0.21	0.0083		1.95	0.0768	15/64	5.95	0.2344		15.50	0.6102
90	0.22	0.0087	5/64	1.98	0.0781	-	6.00	0.2362	5/8	15.88	0.625
89	0.23	0.0091	47	1.99	0.0785	В	6.04	0.238	-	16.00	0.6299
88	0.24	0.0095	-	2.00	0.0787	С	6.15	0.242	41/64	16.27	0.6406
-	0.25	0.0098	40	2.05	0.0807	D 1/4	6.25	0.246	04/00	16.50	0.6496
87	0.25 0.26	0.0100 0.0102	46 45	2.06 2.08	0.0810 0.0820	1/4 E	6.35 6.35	0.25 0.25	21/32	16.67 17.00	0.6562 0.6693
86	0.27	0.0102	40	2.15	0.0846	_	6.50	0.2559	43/64	17.07	0.6719
	0.27	0.0106	44	2.18	0.0860	F	6.53	0.257	11/16	17.46	0.6875
85	0.28	0.0110	43	2.26	0.0890	G	6.63	0.261		17.50	0.689
	0.29	0.0114	42	2.37	0.0935	17/64	6.75	0.2656	45/64	17.86	0.7031
84	0.29	0.0115	3/32	2.38	0.0938		6.75	0.2657	-	18.00	0.7087
-	0.30	0.0118	41	2.44	0.0960	H	6.76	0.266	23/32	18.26	0.7188
83	0.30	0.0120	40	2.50	0.0980	I	6.91	0.272	47/04	18.50	0.7283
82	0.32 0.32	0.0125 0.0126	39 38	2.53 2.58	0.0995 0.1015	J	7.00 7.04	0.2756 0.2772	47/64	18.65 19.00	0.7344 0.748
81	0.32	0.0126	37	2.56	0.1013	K	7.04	0.2772	3/4	19.00	0.746
80	0.34	0.0135	36	2.71	0.1065	9/32	7.14	0.2812	49/64	19.45	0.7656
79	0.37	0.0145	7/64	2.78	0.1094	L	7.37	0.29		19.50	0.7677
1/64	0.40	0.0156	35	2.79	0.11	М	7.49	0.2949	25/32	19.84	0.7812
78	0.41	0.0160	34	2.82	0.111		7.50	0.2953	-	20.00	0.7874
77	0.46	0.0180	33	2.87	0.113	19/64	7.54	0.2969	51/64	20.24	0.7969
-	0.50	0.0197		2.90	0.1142	N	7.67	0.3020		20.50	0.8071
76	0.51	0.0200	32	2.95	0.116	E/10	7.75	0.3051	13/16	20.64	0.8125
75 74	0.53 0.57	0.0210 0.0225	31	3.00 3.05	0.1181 0.12	5/16	7.94 8.00	0.3125 0.315	53/64	21.00 21.03	0.8268 0.8281
-	0.60	0.0223	1/8	3.18	0.125	0	8.03	0.316	27/32	21.43	0.8438
73	0.61	0.0240	30	3.26	0.1285	P	8.20	0.323		21.50	0.8465
72	0.64	0.0250		3.30	0.1299	21/64	8.33	0.3281	55/64	21.84	0.8594
71	0.66	0.0260	29	3.45	0.136	Q	8.43	0.332	-	22.00	0.8661
-	0.70	0.0276		3.50	0.1378		8.50	0.3346	7/8	22.23	0.875
70	0.71	0.0280	28	3.57	0.1405	R	8.61	0.339		22.50	0.8858
69	0.74	0.0292	9/64	3.57	0.1406	11/32	8.73	0.3438	57/64	22.62	0.8906
-	0.75	0.0295	27 26	3.66 3.73	0.144 0.147	S	8.75 8.84	0.3445	29/32	23.00 23.02	0.9055
68 1/32	0.79 0.79	0.0310 0.0313	20	3.75	0.147	-	9.00	0.348 0.3543	59/64	23.42	0.9062 0.9219
-	0.80	0.0315	25	3.80	0.1495	Т	9.09	0.358	00/04	23.50	0.9252
67	0.81	0.0320	24	3.86	0.152	23/64	9.13	0.3594	15/16	23.81	0.9375
66	0.84	0.0330	23	3.91	0.154	U	9.35	0.368	-	24.00	0.9449
65	0.89	0.0350	5/32	3.97	0.1562		9.50	0.374	61/64	24.21	0.9531
-	0.90	0.0354	22	3.99	0.157	3/8	9.53	0.375		24.50	0.9646
64	0.91	0.0360	-	4.00	0.1575	V	9.56	0.377	31/32	24.61	0.9688
63 62	0.94 0.97	0.0370 0.0380	21 20	4.04 4.09	0.159 0.161	W 25/64	9.80 9.92	0.386 0.3906	63/64	25.00 25.00	0.9843 0.9844
61	0.99	0.0380	20	4.09	0.1654	23/04	10.00	0.3900	1	25.40	1.00
-	1.00	0.0394	19	4.22	0.166	X	10.08	0.397		25.40	
60	1.02	0.0400	18	4.31	0.1695	Y	10.26	0.4040			
59	1.04	0.0410	11/64	4.37	0.1719	13/32	10.32	0.4062			
58	1.07	0.0420	17	4.39	0.173	Z	10.49	0.413			
57	1.09	0.0430	16	4.50	0.177		10.50	0.4134			
56	1.18	0.0465	15	4.57	0.18	27/64	10.72	0.4219			
3/64	1.19	0.0469	14	4.62	0.182	7/16	11.00	0.4331			
	1.20 1.25	0.0472 0.0492	13 3/16	4.70 4.76	0.185 0.1875	1/10	11.11 11.50	0.4375 0.4528			
	1.30	0.0492	12	4.70	0.1873	29/64	11.51	0.4526			
55	1.32	0.0520	11	4.85	0.191	15/32	11.91	0.4688			
54	1.40	0.0550	10	4.91	0.1935	-	12.00	0.4724			
	1.45	0.0571	9	4.98	0.196	31/64	12.30	0.4844			
	1.50	0.0591	-	5.00	0.1968		12.50	0.4921			
53	1.51	0.0595	8	5.05	0.199	1/2	12.70	0.50			
1/10	1.55	0.0610	7	5.11	0.2010	- 20/04	13.00	0.5118			
1/16	1.59 1.60	0.0625 0.0630	13/64 6	5.16 5.18	0.2031 0.2040	33/64 17/32	13.10 13.49	0.5156 0.5312			
52	1.61	0.0635	5	5.16	0.2040	11/32	13.49	0.5312			
		1500	_	5.25	0.2067	35/64	13.89	0.5469			

1 inch=25.400 mm, see DIN 4890 (issue 2/75)

GUHRING 8

	_		_
\mathbf{r}	Э	$\boldsymbol{\alpha}$	\boldsymbol{D}

88	HPC	and HSC	- milling	strategie	S
----	-----	---------	-----------	-----------	---


- 88 Correct milling with the most efficient strategies
- 89 Foundations for economically efficient milling
- 90 Influence on process through tool engagement
- 92 HPC & HSC milling
- 94 Plunging
- 95 Tool cooling
- 96 Application/Troubleshooting
- **100** Carbide straight shanks
- **101** Formulas
- Milling cutter types and their primary fields of application
- **104** Materials
- 105 Comparison of hardness

Correct milling with the most efficient strategies

HPC & HSC milling strategies

These milling strategies belong to the state-of-the-art and most effective application methods for current solid carbide milling tools. When applied, an enormously high metal removal rate ensures a considerable increase in productivity. Very high cutting parameters can be achieved even with less powerful machines or unstable machining conditions. With difficult-to-machine materials or unfavourable diameter-length-ratios of the tools a massive increase of process reliability can be achieved.

HIGH PERFORMANCE CUTTING

max. metal removal rate/time → stable conditions; short de-clamping; high performance; good cooling

HIGH SPEED CUTTING

at high speed/high feed rate → high dynamics; low cutting depth; low drive power

Principles and objectives

Maximum tool utilisation

- utilisation of entire cutting edge length
- full power delivery
- increased tool life
- balanced wear

Modification of cutting distribution

- low cutting widths ae
- high cutting depths ap

High process reliability

- low tool wrapping
- · improved thermal conditions at tool cutting edge
- low mechanical stress

Maximum metal removal rate

saving time/machine costs

Foundations for economically efficient milling

Peripheral requirements

Applicable in every material group

- easy to machine materials = increase in productivity
- difficult to machine materials = increase in process reliability

High-dynamic machining centres

- short acceleration distances
- higher speed range
- small to medium tool diameters

Heavy machines

- stable feed axes
- high spindle torque
- · medium to large tool diameters

Unstable to stable workpiece clamping

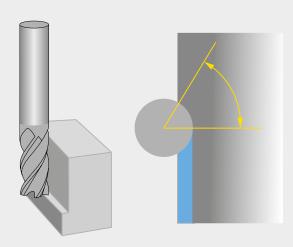
- stable = vibration-free machining = maximum metal removal rate
- unstable = reduction of radial forces = increased process reliability

Application parameters

Low cutting width ae to 0.33 x D

- low angle of engagement <70°
- · short t. of contact between cutting edge and component

Very high tooth feed fz


· reduced chip thickness allows considerably higher fz

Very high cutting speed vc

• reduced heating up and prolonged cooling down allow very high vc values

High cutting depth ap

- improved leverage effect
- high metal removal rate
- · increase in contact points between tool and component

Tool angle of engagement & tool contact time

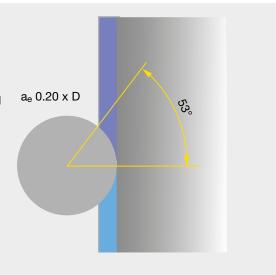
Metal removal rate

The metal removal rate specifies how high the actual chip removal is per minute. It is especially suitable for comparing different machining strategies.

$$\mathbf{a}_{p}$$
 (mm) \mathbf{x} \mathbf{a}_{e} (mm) \mathbf{x} \mathbf{v}_{f} (m/min) = \mathbf{Q} (cm³/min)

Influence on process through tool engagement

Angle of engagement


The angle of engagement inscribes the cutting range of the tool from start of chip formation to exit from the material. With these parameters the stress impacting on the tool can be assessed. With straight milling paths the angle is constant, with concave milling paths it increases and with convex milling paths it decreases.

Straight milling path

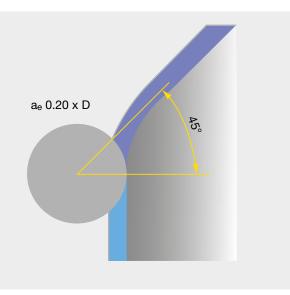
- · constant angle of engagement
- · constant tool stress

Example: $a_e 0.20 \times D = 53^\circ$ engagement

Engagement remains a constant 53°

Angle of engagement with convex contour radii

Convex milling path


- · decreasing angle of engagement
- · reduced tool stress

Example: $a_e 0.20 \times D = 53^\circ$ engagement

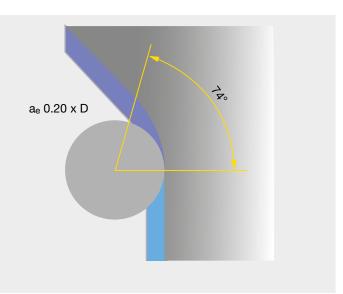
Engagement reduces to 45°

Measures: ae may be increased

fz can be increased

Angle of engagement with concave contour radii

Concave milling path


- increasing angle of engagement
- increased tool stress

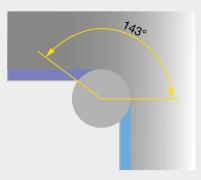
Example: $a_e 0.20 \times D = 53^\circ$ engagement

Engagement increases to 74°

Measures: a_e must be reduced

fz must be reduced in radius

Influence on process through tool engagement


Angle of engagement with 90° corner radii

Tool radius = Corner radius

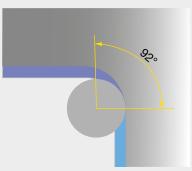
- · very unfavourable for tool dynamics
- change of stress direction
- · abrupt increase in tool stress

Example: Increase of engag. angle from 53° to 143° (270°)

Measures: vc and fz must be heavily reduced

ae 0.20 x D

a_e 0.20 x D

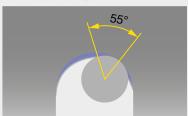

Tool radius < Corner radius

- machine can interpolate the path
- no "impact" on tool
- · lower increase of tool stress

Example: Increase of engag. angle from 53° to 92° (174°)

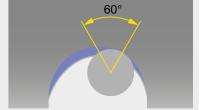
Measures: ae must be reduced

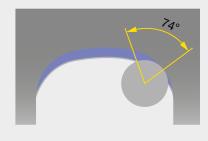
fz must be heavily reduced in radius



Ratio of flute width to tool diameter with trochoidal milling

Flute width 1.7 - 2.0 x D


- cut in C-arc
- a_e max. 0.10 x D (theor. 37°)
- Increase of angles of engagement by up to 50%


Flute width 2.1 - 3.0 x D

- cut in C-arc
- a_e max. 0.15 x D (theor. 46°)
- increase of angles of engagement by up to 50%

Flute width ab 3.1 x D

- cut in D arc
- a_e max. 0,20 x D (theor. 53°)
- increase of angles of engagement by up to 40%

	Guide values for increasing the cutting values with cutting edge lengths up to 3 x D								
					GTC composition comp	HPC Roughing	and finishing		
Material Application radial feed in % vc factor * fz factor *						Angle of engagement			
					Slotting	100%	1	1	180°
					HPC Roughing	33%	1,5	1,3	70°
					HPC Roughing	25%	1,6	1,5	60°
N					HPC Roughing	20%	1,7	1,6	53°
	Р	K			HPC Roughing	15%	1,8	1,9	46°
		K	м		HSC Roughing	10%	1,9	2,3	37°
			IVI	S	HSC Roughing	8%	2,0	2,5	31°
					HSC Roughing	5%	2,1	2,5	26°
					HSC Finishing	3%	2,0	1,2	20°
N	Р	K			HSC Finishing	2%	2,0	1,1	18°
IA			М	S	HSC Finishing	1%	2,0	1,0	11°
					HSC fine finishing	0,5	2,2	0,9	8°

^{*} base value for the calculation with vc and fz factors is the value specified in the Guhring Navigator for "slotting" in the respective material group.

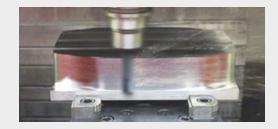
Base cutting values slotting - RF 100 tools - smooth cutting

		A 1' 1'					f _z (n	nm/z) w	ith non	n. Ø			
Material	Hardness	Application	V _C	3	4	5	6	8	10	12	16	20	25
P1	≤ 850 N/mm ²	Slotting	180	0,015	0,020	0,025	0,030	0,040	0,060	0,072	0,096	0,120	0,150
P2	850-1200 N/mm ²	Slotting	160	0,014	0,019	0,024	0,029	0,038	0,055	0,066	0,088	0,110	0,138
P3	850-1400 N/mm ²	Slotting	135	0,014	0,018	0,023	0,027	0,036	0,050	0,060	0,080	0,100	0,125
M1	< 750 N/mm ²	Slotting	120	0,014	0,018	0,023	0,027	0,036	0,050	0,060	0,080	0,100	0,125
M2	750-850 N/mm ²	Slotting	80	0,012	0,016	0,020	0,024	0,032	0,045	0,054	0,072	0,090	0,113
M3	> 850 N/mm ²	Slotting	70	0,011	0,014	0,018	0,021	0,028	0,040	0,048	0,064	0,080	0,100
S-Ni	≤ 1300 N/mm ²	Slotting	30	0,008	0,011	0,014	0,017	0,022	0,032	0,038	0,051	0,064	0,080
S-Ti	≤ 1300 N/mm ²	Slotting	60	0,012	0,016	0,020	0,024	0,032	0,045	0,054	0,072	0,090	0,113
K1	≤ 240 HB	Slotting	160	0,017	0,022	0,028	0,033	0,044	0,065	0,078	0,104	0,130	0,163
K2	> 240 HB	Slotting	140	0,015	0,020	0,025	0,030	0,040	0,055	0,066	0,088	0,110	0,138
Wr. al.alloy	≤ 5% Si	Slotting	500	0,020	0,026	0,033	0,039	0,052	0,075	0,090	0,120	0,150	0,188
Cast al. alloy	> 5% Si	Slotting	230	0,017	0,022	0,028	0,033	0,044	0,060	0,072	0,096	0,120	0,150
Non-fer.metals	≤ 850 N/mm ²	Slotting	250	0,017	0,022	0,028	0,033	0,044	0,060	0,072	0,096	0,120	0,150

$a_p \; (\text{mm}) \; x \; a_e \; (\text{mm}) \; x \; v_f \; (\text{m/min}) = Q \; (\text{cm}^3/\text{min})$

Example:	HPC roughing: 15% a _e ; 2 x D a _p ; C45
Tool:	RF 100 U Ø 12mm - 4 flutes
Feed:	radial feed a _e 1.8 mm = 15% of D
Base value slotting	v _c slotting = 180 m/min, f _z slotting= 0.072 mm
Conversion:	v_c factor = 1.8 $\longrightarrow v_c$: 180 m/min x 1.8 = v_c 324 m/min f_z factor = 1.9 $\longrightarrow f_z$: 0.072 mm x 1.9 = f_z 0.137
Increased values:	v _c : 324 m/min / f _z : 0.137 mm n: 8594 U/min / v _f : 4710 mm/min
Metal removal rate:	Q = 203 cm ³ /min

92


HPC & HSC milling – fully optimised application examples

Application example - material 16MnCr5

RF 100 Speed, #6761, Ø 16 mm, HPC clamping chuck + PINLock-safety

v_c 410 m/min $h_m \, 0.123 \; mm$ f_z 0.450 mm a_e 1.2 mm a_p 45 mm v_f 14690 mm/min

 $Q = 793 \text{ cm}^3/\text{min}$

Application example - material Hardox 400 ®

RF 100 U, #3871, Ø 20 mm, Weldon clamping chuck

v_c 200 m/min f_z 0.180 mm h_m 0.049 mma_e 1.5 mm a_p 55 mm v_f 2290 mm/min

Q = 189 cm³/min

HPC & HSC milling – strategy comparison

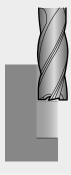
Application comparison - material 42CrMo4

Gühring

RF 100 Diver, #6736, Ø 12 - Z4, Weldon clamping chuck v_c 300 m/min f_z 0.120 mm n 7960 U/min v_f 3820 mm/min a_e 1.5 mm a_p 24 mm

 $Q = 138 \text{ cm}^3/\text{min}$

5 radial cuts per 1200 mm path Machining time = 1.34 min



Application comparison - material 42CrMo4

Competition

HPC milling cutter, Ø 16 - Z4 Weldon clamping chuck v_c 140 m/min f_z 0.070 mm n 2790 U/min v_f 780 mm/min a_e 7.5 mm a_p 12 mm $Q = 70 \text{ cm}^3/\text{min}$

2 axial cuts per 1200 mm path Machining time = 3.05 min

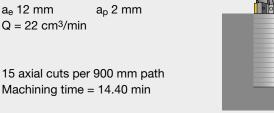
Application comparison - material 1.4301

Gühring

RF 100 SF, #3632, Ø 16 – Z6, Weldon clamping chuck v_c 160 m/min f_z 0.100 mm n 3185 U/min \dot{v}_f 1910 mm/min a_p 30 mm a_e 1.2 mm

 $Q = 69 \text{ cm}^3/\text{min}$

10 radial cuts per 900 mm path Machining time = 4.43 min


Application comparison - material 1.4301

Competition

Indexable inserted milling cutter Ø 25 – Z3 v_c 200 m/min f_z 0.120 mm n 2550 U/min v_f 920 mm/min

a_e 12 mm

 $Q = 22 \text{ cm}^3/\text{min}$

Plunging strategies and guide values

General plunging with standard face geometries Base $f_z = f_z$ slotting Ramping • ramping angle = 2° - 5° to max. ap 1 x D f_z 75% · even load increase **Oscillating** • ramping angle = 1° - 4° to max. a_p 1 x D f_z 75% · results in load peaks • feed = $0.05 - 0.1 \times D$ per revolution f_z 100% smallest diameter to be produced = 1.7 x D Grooving alternative when problems through excess. radial forces • a_e 0.25 x D – a_p cutting edge length / clearance ground f_z 100% length **Drilling / pilot drilling** max. depth feed 0.5 x D then pecking f_z 50%

Special plunging - tools with special plunging geometry

RF 100 Diver - #6736 / #6737

- h10 cutting edge tolerance
- 36°/37°/38° helix
- reduced and nominal diameter
- · good drilling characteristics
- very good milling characteristics

First choice: Milling and plunging

Ramping

• ramping angle = 15° - 45° to max. ap 1 x D

Oscillating

• ramping angle = 10°-20° bis max. a_p 1 x D

Helix

- feed = 0.10 -0.30 x D pro Umdrehung
- smallest diameter to be produced = 1.7 x D

Grooving

- altern. when problems through excessive radial forces
- a_e 0.25 x D a_p cutting edge length/ clearance grind

Drilling / pilot drilling

• max. depth feed 1.0 x D then pecking

Pilot milling cutter RF 100 P - #6716

- m8 cutting edge tolerance
- 30° helix
- a multitude of individual dimensions
- very good drilling characteristics
- · sufficient milling characteristics

First choice: Drilling and pilot drilling

Cutting values "special plunging" to cutting value tables RF 100 Diver & RF 100 P

General recommendation for tool cooling

Steel Avoid thermal shock Cast iron Dry machining, compressed air, MQL: · Dissipate machining temperature via chip · Supporting chip evacuation Hardened · Cooling of tool cutting edge **Stainless** Soluble oil, neat oil: · Preventing built-up edge Special alloy · Supporting chip evacuation Non-ferrous Preventing built-up edge Soluble oil, neat oil: metals

· Supporting chip evacuation

Exceptions for material ranges

When coolant is not available the cutting speed (vc) and/or the radial feed (ae) should be reduced. The resulting reduced temperature reduces the risk of thermal shock.

If there are **chip evacuation problems** the application of coolant should be taken into consideration, poor evacuation of chips can lead to massive tool wear and even tool breakage.

When heat is being generated due to poor chip evacuation, it should be checked if through coolant is available. By using a specifically directed "coolant jet", coolant can be supplied where congested without hitting the cutting area. Alternatively, the application of coolant for the entire machining operation is recommended.

Other notes

Finishing

The application of coolant is principally an advantage as a better surface finish can be achieved.

Very long tools

Coolant can result in a smoother process, as the lubricant has a vibration-reducing effect.

Alignment of coolant

- as acurate as possible in the cutting area from at least three directions
- no flushing back of small chips to the cutting area

Solid carbide milling cutters with internal cooling

- optimal chip evacuation, very good cutting edge cooling, very effective against built-up edges
- to be recommended especially for larger tool diameters and tough materials

Peripheral cooling / Guhrojet

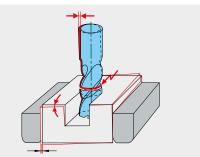
Best external option: Optimal tool cooling and chip evacuation thanks to the direct route from coolant exit to cutting area

GÜHROJET

General notes

All the cutting rate recommendations specified in this catalogue are standard values valid exclusively for new tools or tools re-ground to Guhring specifications. Pre-requisites are stable machines, optimal cooling, optimal tool clamping and

maximum concentricity of the tool and the machine spindle. Our recommended cutting rates must be reduced if the conditions deviate. The values may also be adjusted to influence surface quality, machining rate or tool life.

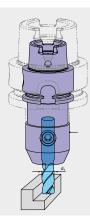

1. Workpiece clamping

Loss of tool life or tool breakage through unstable clamping

• improve workpiece clamping

Alternative:

- reduce feed
- reduce cutting width or depth
- · modify milling strategy

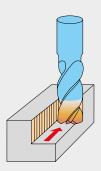

2. Tool clamping

Loss of tool life or tool breakage through unstable, worn or too small/long/thin tool holder

 apply new or larger tool holder or holder with increased clamping force and increased concentricity

Alternative:

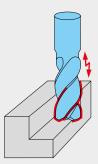
- · reduce cutting rates
- reduce clamping length
- apply tool with smaller diameter
- check clamping screws for wear


3. Surface quality

Excessive peak-to-valley height Ra/Rz at the tool surface through excessive feed and feed rates or vibrations

• improve workpiece clamping and tool clamping (see points 1 and 2)

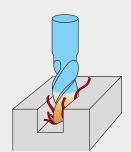
Alternative:


- reduce feed and feed rate
- increase cutting speed
- use/improve cooling

4. Vibrations

High tool wear, insufficient workpiece surface quality and insufficient dimensional accuracy through vibration

- improve workpiece and tool clamping (see points 1 and 2)
- increase tooth feed, because the chip centre thickness is too small
- modify speed
- modify milling strategy, i.e. select alternative cutting distribution
- change tool selection, i.e. reduce no. of teeth or spiral

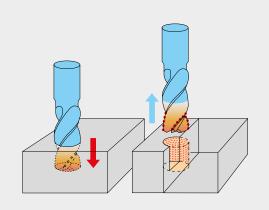

5. Chip congestion/cooling

Significant reduction in tool life, crumbling on cutting lips, edge build-up or conglutination of flutes through insufficient chip evacuation

• select milling cutters with internal cooling

Alternative:

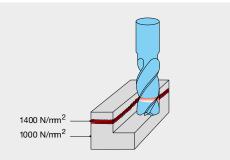
- peripheral cooling via GM 300 chuck
- increase volume flow
- · adjust coolant flow
- apply compressed air cooling (according to tool and material)
- reduce feed rate
- modify cutting distribution


6. Pecking when drilling

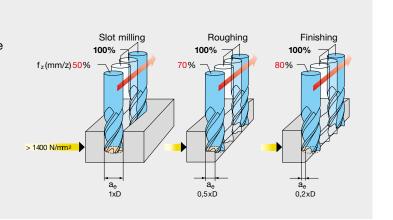
Significant reduction in tool life as well as crumbling of cutting lips through insufficient chip evacuation and thermal stresses

- · select milling cutter with internal cooling
- with drilling depths > 0.5 x D pecking in stages

Alternative:


- peripheral cooling via GM 300 chuck
- increase volume flow
- · adjust coolant flow
- reduce feed rate

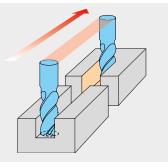
7. Thermal influence on materials


Through welding or torch cutting, the material characteristics at the parting line do not correspond with the specified material class

- reduce cutting rates
- select tool for materials with a higher tensile strength
- climb milling with solide carbide milling cutters

8. Entry in hardened materials

For entering materials over 1400 N/mm 2 (44HRC), reduce the feed rate v_f (mm/min) in accordance with the illustration on the right



9. Loss in tool life with interrupted cutting

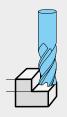
Significant loss in tool life through interrupted cutting (especially with milling angles of 90°)

- modify cutting distribution
- reduce feed rate for entry and exit
- reduce approach angle

10. Feed rate adjustment: Modifying the cutting width

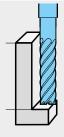
- when modifying the cutting width ae, the feed rate must be reduced in accordance with the illustration on the right
- · select cutting speed in accordance with cutting value tables
- for slotting and roughing with a feed of a_D > 1.5xD, v_c and f_z should be reduced by 25%

 $a_e = 1 \times D$ $f_z = 100 \%$


 $a_e = 0,66 \times D$ $f_z = 115 \%$

 $a_e = 0.25 \times D$ $f_z = 150 \%$

11. Feed rate adjustment: Modifying the cutting depth


- when modifying the cutting depth ap, the feed rate must be reduced in accordance with the illustration on the right
- cutting speed or revolutions remain unchanged up to cutting depths of 2xD, must only be adapted over 2xD
- for longer tools revolutions and feed must be reduced in accordance with vibration

 $a_p = 1 \times D$ $f_z = 100 \%$

 $a_p = 2 \times D$ $f_z = 50 \%$

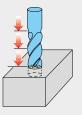
 $f_z = 25 \%$

12. Plunging strategies:

for drilling

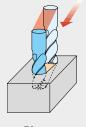
- reduce feed rate v_f (mm/min.)
- additional pecking for drilling depths > 0.5 x D or transition to radial machining

Attention: Danger of breakage through abrupt load increase!

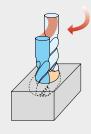

Oblique plunging up to 5°:

• reduce feed rate v_f (mm/min.) in accordance with the illustration on the right

Helical plunging:


- for helical plunging on a milling cycle, we recommend a feed of 0.1 to 0.2 per cycle
- reduce feed rate v_f (mm/min.) in accordance with the illustration on the right
- select preferred hole diameter 1.7 x D

90° $f_z = 50 \%$



 $f_z = 75 \%$

 $f_z = 100 \%$

13. HSC milling with ball nosed copy milling cutters

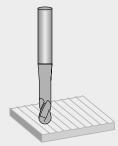
HSC = High Speed Cutting:

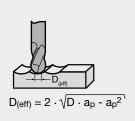
Milling operations with very low metal removal but with consideration of the effective tool diameter.

3D machining with ball or Torus milling.

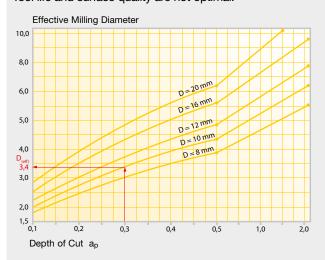
- low cutting width (ae)
- low cutting depth (a_D)
- high feed rate per tooth (fz)
- very high cutting speed (v_c)

Function and Advantages

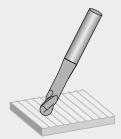

Calculation of the effective tool diameter


- adjusting speed to effective tool diameter
- Increasing the overall feed rate
- Improving the surface quality

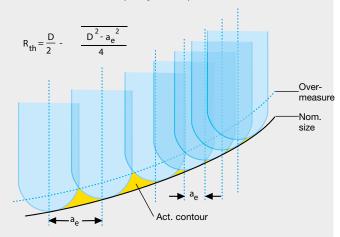
Consideration of the pressure angle / width


 adjusting the tooth feed to achieve the required surface quality

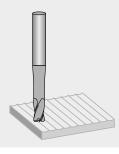
At cutting depths a_p <0.2xD the actual engaged effective diameter $D_{(eff)}$ must be used to calculate the speed. It is derived from the graphic below with the spindle not engaged. To increase the tool life, we recommend machining with a tilted spindle.



The ball-nosed milling cutter is perpendicular to the machining surface. In the centre of the tool is the cutting speed = 0. Tool life and surface quality are not optimal.

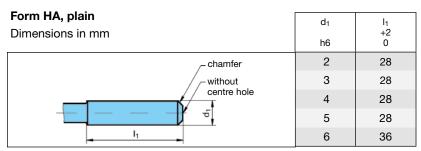


Example: For a full copy milling radius Ø 10 mm and a depth of cut a_p of 0.3 mm results in an effective diameter $D_{(\text{eff})}=3.4$ mm This $D_{(\text{eff})}$ shall be used to calculate the cutting speed v_c


The ball-nosed milling cutter is oblique to the machining surface. The centre of the tool is not engaged.

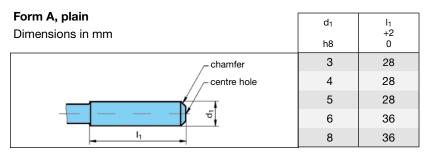
Tool life and surface quality are improved.

The reduction of the cutting width, ae. leads to an improvement of the surface quality of the workpiece (reduced peak-to-valley height).


14. HSC milling with corner radius - copy milling cutters / Torus milling

HSC milling & Torus milling

3D-machining with Torus milling cutters. Engagement of the tool predominantly on the corner radius. Improves the surface quality and the tool life. Of advantage when 3D-machining flat contour areas on 3-axis machines.



d	1	l ₁ +2
h	6	0
	В	36
1	0	40
1	2	45
1	4	45
1	6	48

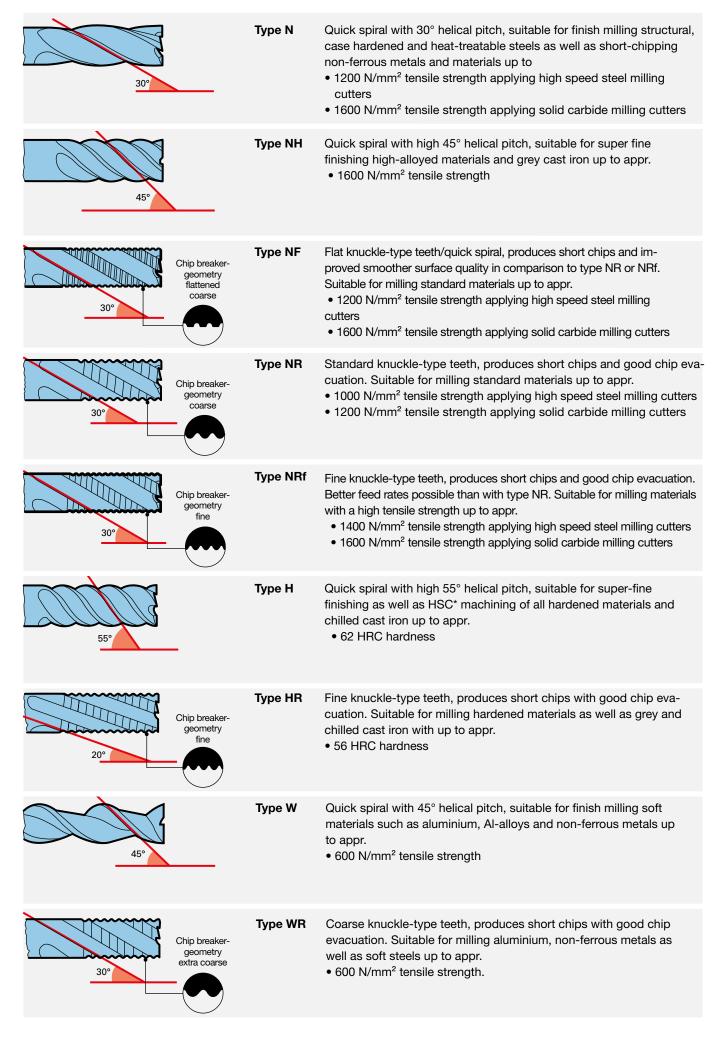
d ₁	I ₁ +2
h6	0
18	48
20	50
25	56
32	60

Form HB, with drive flat	d ₁	b ₁	e ₁	h₁	I ₁	l ₂
Dimensions in mm		+0.05	0		+2	+1
	h6	0	-1	h11	0	0
	6	4.2	18	5.1	36	-
with one drive flat for	8	5.5	18	6.9	36	_
$d_1 = 6$ and 20 mm e_1 chamfer	10	7	20	8.5	40	-
without	12	8	22.5	10.4	45	_
centre hole	14	8	22.5	12.7	45	-
- - F - - - - - - - -	16	10	24	14.2	48	_
	18	10	24	16.2	48	-
<u> </u>		11	25	18.2	50	-
with two drive flats for $d_1 = 25$ and 32 mm b_1 b_2 without centre hole	25	12	32	23	56	17
chamfer	32	14	36	30	60	19

High speed steel straight shanks, DIN 1835-1 (extract)

d ₁	l ₁ +2
h8	0
10	40
12	45
16	48
20	50
25	56

d ₁	l ₁ +2 0
h8	0
32	60
40	70
50	60
63	90


Form B, with drive flat Dimensions in mm		b ₁ +0.05 0	e ₁ 0 -1	h ₁ h13	l ₁ +2 0	l ₂ +1 0	centre hole form R DIN 332 sect. 1
with one drive flat for d1 = 6 20 mm	6	4.2	18	4.8	36	-	1.6x2.5
chamfer 45°+1° e ₁	8	5.5	18	6.6	36	-	1.6x3.35
centre hole	10	7	20	8.4	40	-	1.6x3.35
5	12	8	22.5	10.4	45	-	1.6x3.35
11	16	10	24	14.2	48	-	2.0x4.25
		11	25	18.2	50	-	2.5x5.3
with two drive flats for d1 = 25 63 mm		12	32	23	56	17	2.5x5.3
centre hole	32	14	36	30	60	19	3.15x6.7
	40	14	40	38	70	19	3.15x6.7
	50	18	45	47.8	80	23	3.15x6.7
chamfer		18	50	60.8	90	23	3.15x6.7

100 GUHRING

Symbol	Description	metric	Formula
z	No. of teeth		
D	Milling cutter diameter	mm	
a _p	Depth of cut	mm	
a _e	Width of cut	mm	
lf	Milling length	mm	
n	Revolution per min.	U/min	$n = \frac{v_c \cdot 1000}{\pi \cdot D}$
V _c	Cutting speed	m/min	$v_{c} = \frac{\pi \cdot D \cdot n}{1000}$
Vf	Feed per min.	mm	$v_f = n \cdot z \cdot f_z$
f _z	Feed per tooth	mm	$f_z = \frac{v_f}{n \cdot z}$
f/U	Feed per revolution	mm	$f/U = \frac{V_f}{n}$
f/U	Feed per revolution	mm	$f/U = f_z \cdot z$
Q	Chip volume	cm ³ /min	$Q = \frac{a_p \cdot a_e \cdot v_f}{1000}$
T	Milling time	min	$T = \frac{I_f}{V_f}$
hm	Average chip thickness	mm	$hm = fz \cdot \sqrt{\frac{a_e}{D}}$
D _(eff)	Effective diameter Effective diameter	mm	$D_{(eff)} = 2 \cdot \sqrt{D \cdot a_p - a_p^2}$
	with approach angle	mm	$D_{(eff)} = D \cdot \sin \left[\beta + \arccos \left(\frac{\dot{D} - 2a_p}{D} \right) \right]$
R _{th}	Peak-to-valley height	mm	$R_{th} = \frac{D}{2} = \sqrt{\frac{D^2 - a_e^2}{4}}$
Z_b	Optimal step over for torus milling	mm	$Z_b = \frac{D - 2 \times R}{2}$

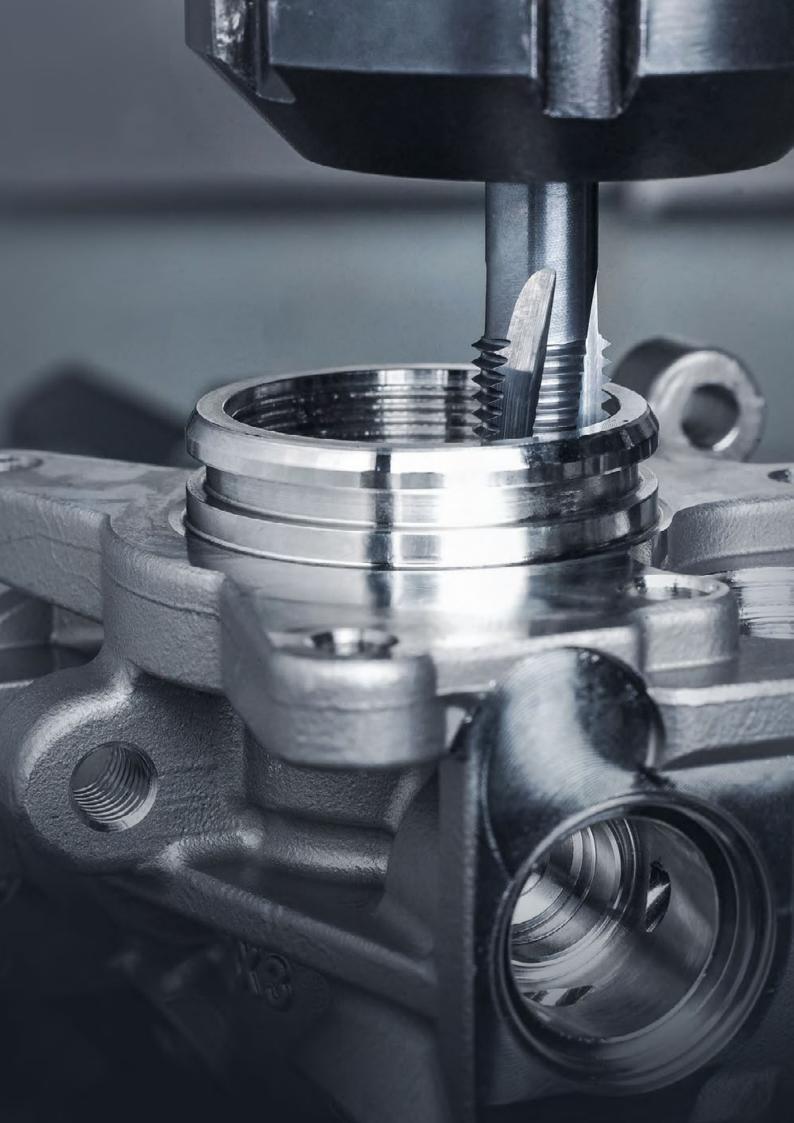
RF 100 U (type N)	35°/38° helix. Suitable for slotting, roughing and finishing steel, high-alloyed steel and hardened steel up to • 1600 N/mm² tensile strength (48 HRC)
RF 100 U (type NH) 3-fluted	41°/43°/45° helix. Suitable for slotting, roughing and finishing steel, high-alloyed steel and stainless steel up to • 1400 N/mm² tensile strength (44 HRC) 3-fluted suitable for extreme cutting depths
RF 100 U/HF (type HF)	30°/32° helix and roughing and finishing geometry. Suitable for slotting and roughing with large cutting widths and depths in steel, high-alloyed steel and hardened steel up to • 1600 N/mm² tensile strength (48 HRC)
RF 100 F (type NH)	40°/42° helix. Suitable for slotting, roughing and finishing as well as HPC-milling/imachining tough steels as well as other long-chipping materials up to • 850 N/mm² tensile strength (25 HRC)
RF 100 VA (type N)	36°/38° helix. Suitable for slotting, roughing and finishing VA steels and stainless materials
RF 100 VA/NF (type NF)	36°/38° helix and roughing and finishing geometry. Suitable for slotting and roughing VA steels and stainless materials
RF 100 A (type W)	39°/40°/41° helix. Suitable for slotting, roughing and finishing aluminium and Al-alloys as well as long-chipping materials and non-ferrous metals
RF 100 A/WF (type WF)	29°/30°/31° helix and roughing and finishing geometry. Suitable for slotting and roughing aluminium and Al-alloys
RF 100 H (type H)	$40^{\circ}/42^{\circ}$ helix and progressive core diameter. Suitable for roughing up to 1xD in materials up to 54 HRC, for finishing over the entire cutting edge length in materials over 63 HRC. With HPC strategy suitable for roughing materials > 63 HRC.
RF 100 Ti (type N)	35°/38° helix with corner radius. Suitable for slotting and roughing of titanium alloys as well as difficult-to-cut alloys
RF 100 SF (type NH)	44°/45°/46° helix. Suitable for HSC super fine finishing for semi-roughing with feed widths up to max. 0.3xD and HPC roughing over the entire cutting edge length for standard steels, c ast iron, non-ferrous metals and high-alloyed materials
	RF 100 U (type NH) 3-fluted RF 100 U/HF (type HF) RF 100 F (type NH) RF 100 VA/NF (type NF) RF 100 A (type W) RF 100 A/WF (type WF) RF 100 H (type H) RF 100 Ti (type N)

The new material abbreviations (selection)

mat. nos.	abbreviation old	abbreviation new	mat. nos.	abbreviation old	abbreviation new	mat. nos.	abbreviation old	abbreviation new	mat. nos.	abbreviation old	abbreviation new
0.6010	GG10	EN-GJL-100	1.0728	60 S 20	_	1.4436	X5CrNiMo 17 133	X3CrNiMo17-13-3	1.7043	_	38Cr4
0.6020	GG20	EN-GJL-200	1.0736	9 SMn 36	11SMn37	1.4438	X2CrNiMo 18 16 4	X2CrNiMo18-15-4	1.7147	20 MnCr 5	20MnCr5
0.6025	GG25	EN-GJL-250	1.0737	9 SMnPb 36	11SMnPb37	1.4460	X4CrNiMo2752	X3CrNiMoN27-5-2	1.7149	20 MnCrS 5	20MnCrS5
0.6035	GG35	EN-GJL-350	1.0756	35 SPb 20	35SPb20	1.4462	X2CrNiMoN2253	X2CrNiMoN22-5-3	1.7176	55 Cr 3	55Cr3
0.7050	GGG50	EN-GJS-500-7	1.0757	45 SPb 20	46SPb20	1.4509	X6CrTiNb 18	X2CrTiNb18	1.7182	27 MnCrB 5 2	27MnCrB5-2
0.7070	GGG70	EN-GJS-700-2	1.0760	-	38SMn26	1.4510	X6CrTi 17	X3CrTi17	1.7185	33 MnCrB 5 2	33MnCrB5-2
0.8035	GTW35	EN-GJMW-350-4	1.0761	-	38SMnPb26	1.4511	X6CrNb 17	X3CrNb17	1.7189	39 MnCrB 6 2	39MnCrB6-2
0.8155	GTS55	EN-GJMB-550-4	1.0762	-	44SMn28	1.4512	X6CrTi 12	X2CrTi12	1.7213	25 CrMoS 4	25CrMoS4
0.8170	GTS70	EN-GJMB-700-2	1.0763	-	44SMnPb28	1.4520	X1CrTi 15	X2CrTi17	1.7218	25 CrMo 4	25CrMo4
1.0022	St 01Z	-	1.0873	-	DC06 [Fe P06]	1.4521	X2CrMoTi 18 2	X2CrMoTi18-2	1.7219	-	26CrMo4-2
1.0035	St 33	S185	1.1103	EStE 255	S255NL1	1.4522	X2CrMoNb 18 2	X2CrMoNb18-2	1.7220	34 CrMo 4	34CrMo4
1.0039	St 37 -2	S235JRH	1.1105	EStE 315	S315NL1	1.4532	X7CrNiMoAl 15 7	X8CrNiMoAl15-7-2	1.7225	42 CrMo 4	42CrMo4
1.0044	St 44 -2	S275JR	1.1121	Ck 10	C10E	1.4541	X6CrNiTi18 10	X6CrNiTi18-10	1.7226	34 CrMoS 4	34CrMoS4
1.0050	St 50 -2	E295	1.1141	Ck15	C15E	1.4542	X5CrNiCuNb 17 4	X5CrNiCuNb16-4	1.7227	42 CrMoS 4	42CrMoS4
1.0060	St 60 -2	E335	1.1151	Ck 22	C22E	1.4550	X6CrNiNb 18 10	X6CrNiNb18-10	1.7228	50 CrMo 4	50CrMo4
1.0070	St 70 –2	E360	1.1158	Ck 25	C25E	1.4558	X2NiCrAlTi 32 20	X2NiCrAlTi32-20	1.7264	20 CrMo 5	20CrMo5
1.0114	St 37 –3U	S235J0	1.1170	28 Mn 6	28Mn6	1.4567	X3CrNiCu 18 9 X	X3CrNiCu18-9-4	1.7321	20 MoCr 4	20MoCr4
1.0226	St 02Z	DX51D	1.1178	Ck 30	C30E	1.4568	X7CrNiAl 17 7	X7CrNiAl17-7	1.7323	20 MoCrS 4	20MoCrS4
1.0242	StE 250 -2Z StE 280 -2Z	S250GD S280GD	1.1181	Ck 35 Ck 40	C35E C40E	1.4571	X3CrNiMoTi 25 25	X6CrNiMoTi17-12-2 X3CrNiMoTi25-25	1.7335	22 CrMoS 3 5 13 CrMo 4 4	22CrMoS3-5 13CrMo4-5
1.0244	StE 320 -3Z	S320GD S320GD	1.1191	Ck 40 Ck 45	C40E C45E	1.4577	X1CrMoTi 29 4	X2CrMoTi29-4	1.7362	12 CrMo 19 5	12CrMo19-5
1.0250	C 10	-	1.1203	Ck 45 Ck 55	C55E	1.4592	X100rAl 7	X2Crivio1129-4 X10CrAlSi7	1.7382	10 CrMo 19 5	10CrMo9-10
1.0301	C 10 Pb	_	1.1206	Ck 50	C50E	1.4713	X10CrAl 13	X10CrAlSi13	1.7383	_	11CrMo9-10
1.0306	St 06 Z	DX54D	1.1221	Ck 60	C60E	1.4742	X10CrAl 18	X10CrAlSi18	1.7779	_	20CrMoV13-5-5
1.0312	St 15	DC05 [Fe P05]	1.1241	Cm 50	C50R	1.4762	X10CrAl 24	X10CrAlSi25	1.8159	50 CrV 4	51CrV4
1.0319	RRStE 210.7	L210GA	1.1750	C 75 W	C75W	1.4821	X20CrNiSi 25 4	X20CrNiSi25-4	1.8504	34 CrAl 6	34CrAl6
1.0322	_	DX56D	1.2067	102 Cr 6	102Cr6	1.4828	X15CrNiSi 20 12	X15CrNiSi20-12	1.8519	31 CrMoV 9	31CrMoV9
1.0330	St 12 [St 2]	DC01 [Fe P01]	1.2080	_	X210Cr12	1.4833	X7CrNi 23 14	X7CrNi23-12	1.8550	34 CrAlNi 7	34CrAlNi7
1.0333	USt 13	-	1.2083	_	X42Cr13	1.4841	X15CrNiSi 25 20	X15CrNiSi25-21	1.8807	13 MnNiMoV 5 4	13MnNiMoV5-4
1.0338	St 14 [St 4]	DC04 [Fe P04]	1.2419	_	105WCr6	1.4845	X12CrNi 25 21	X12CrNi25-21	1.8812	18 MnMoV 5 2	18MnMoV5-2
1.0345	HI	P235GH	1.2767	-	X45NiCrMo4	1.4864	X12NiCrSi 36 16	X12NiCrSi35-16	1.8815	18 MnMoV 6 3	18MnMoV6-3
1.0347	RRSt 13 [RRSt 3]	DC03 [Fe P03]	1.3243	S6-5-2-5	S 6-5-2-5	1.4878	X12CrNiTi18 9	X10CrNiTi18-10	1.8821	StE 355 TM	P355M
1.0348	UHI	P195GH	1.3343	S6-5-2	S 6-5-2	1.4903	_	X10CrMoVNb9-1	1.8824	StE 420 TM	P420M
1.0350	St 03Z	DX52D	1.3344	S6-5-3	S 6-5-3	1.5026	55 Si 7	55Si7	1.8826	StE 460 TM	P460M
1.0355	St 05Z	DX53D	1.4000	X6Cr 13	X6Cr13	1.5131	50 MnSi 4	50MnSi4	1.8828	EStE 420 TM	P420ML2
1.0356	TTSt 35 N	P215NL	1.4002	X6CrAl 13	X6CrAl13	1.5415	15 Mo 3	16Mo3	1.8831	EStE 460 TM	P460ML2
1.0358	St 05 Z	-	1.4003	X2Cr 11	X2CrNi12	1.5530	21 MnB 5	20MnB5	1.8832	TStE 355 TM	P355ML1
1.0401	C 15	-	1.4005	-	X12CrS13	1.5531	30 MnB 5	30MnB5	1.8835	TStE 420 TM	P420ML1
1.0402	C 22	C22	1.4006	X10Cr 13	X12Cr13	1.5532	38 MnB 5	38MnB5	1.8837	TStE 460 TM	P460ML1
1.0403	C 15 Pb	-	1.4016	X6Cr 17	X6Cr17	1.5637	10 Ni 14	12Ni14	1.8879	StE	P690Q
1.0406	C 25	C25	1.4021	X20Cr 13	X20Cr13	1.5662	_	X11CrMo5+I	1.8880	WStE	P690QH
1.0419	St 52.0	L355	1.4028	X30Cr 13	X30Cr13	1.5680	36 NiCr 6	X12Ni5	1.8881	TStE	P690QL1
1.0424	St 45.8 (ersetzt) St 42.8 (ersetzt)	P265 P265	1.4031	X38Cr 13 X46Cr 13	X38Cr13 X46Cr13	1.5710	36 NICE 6	36NiCr6 16NiCrS4	1.8888	10 MnTi 3 EStE	10MnTi3 P690QL2
1.0424	H2	P265GH	1.4037	X65Cr13	X65Cr13	1.5752	14 NiCr 14	15NiCr13	1.8900	StE 380	S380N
1.0429	StE 290.7 TM	L290MB	1.4057	X20CrNi 17 2	X17CrNi16-2	1.6210	15 MnNi 6 3	15MnNi6-3	1.8901	StE 460	S460N
1.0457	StE 240.7	L245NB		X12CrMoS 17	X14CrMoS17		16 MnNi 6 3	16MnNi6-3		StE 420	S420N
1.0459	RRStE 240.7	L245GA	1.4105	X4CrMoS 18	X6CrMoS17	1.6310	20 MnMoNi 5 5	20MnMoNi5-5	1.8903	TStE 460	S460NL
1.0461	StE 255	S255N	1.4109	X65CrMo 14	X70CrMo15	1.6311	20 MnMoNi 4 5	20MnMoNi4-5	1.8905		P460N
1.0473	19 Mn 6	P355GH	1.4110	X55CrMo 14	X55CrMo14	1.6341	11 NiMoV 5 3	11NiMoV5-3	1.8907	StE 500	S500N
1.0481	17 Mn 4	P295GH	1.4112	X90CrMoV 18	X90CrMoV18	1.6368	15 NiCuMoNb 5	15NiCuMoNb5	1.8910		S380NL
1.0484	StE 290.7	L290NB	1.4113	X6CrMo 17 1	X6CrMo17-1	1.6511	36 CrNiMo 4	36CrNiMo4	1.8911	EStE 380	S380NL1
1.0486	StE 285	P275N	1.4116	X45CrMoV 15	X50CrMoV15	1.6523	21 NiCrMo 2	21NiCrMo2-2	1.8912	TStE 420	S420NL
1.0501	C 35	C35	1.4120	X20CrMo 13	X20CrMo13	1.6526	21 NiCrMoS 2	21NiCrMoS2-2	1.8913	EStE 420	S420NL1
1.0503	C 45	C45	1.4122	X35CrMo 17	X39CrMo17-1	1.6580	30 CrNiMo 8	30CrNiMo8	1.8915	TStE 460	P460NL1
1.0505	StE 315	P315N	1.4125	X105CrMo 17	X105CrMo17	1.6582	34 CrNiMo 6	34CrNiMo6	1.8917	WStE 500	S500NL
1.0511	C 40	C40	1.4301	X5CrNi 18 10	X5CrNi18-10	1.6587	17 CrNiMo 6	18CrNiMo7-6	1.8918	EStE 460	P460NL2
1.0528	C 30	C30	1.4303	X5CrNi 18 12	X4CrNi18-12	1.7003	i e	38Cr2	1.8919	EStE 500	S500NL1
1.0529	StE 350 -3Z	S350GD	1.4305	X10CrNiS 18 9	X8CrNiS18-9	1.7006		46Cr2	1.8930		P380NH
1.0535	C 55	C55	1.4306	X2CrNi 19 11	X2CrNi19-11	1.7016		17Cr3	1.8932	WStE 420	P420NH
1.0539	StE 355N	S355NH	1.4310	X12CrNi 17 7	X10CrNi18-8	1.7023		38CrS2	1.8935		P460NH
1.0540	C 50	C50	1.4311	X2CrNiN 18 10	X2CrNiN18-10	1.7025		46CrS2	1.8937	TStE 500	P500NH
1.0547	St 52 –3U	S355J0H	1.4313	X4CrNi 13 4	X3CrNiMo13-4		28 Cr 4	28Cr4	1.8972		L415NB
1.0582	StE 360.7	L360NB	1.4318	X2CrNiN 18 7	X2CrNiN18-7	1.7033		34Cr4		StE 415.7 TM	L415MB
1.0601	C 60	C60	1.4335	X1CrNi 25 21	X1CrNi25-21	1.7034		37Cr4	1.8975		L450MB
	15 S 10	11014-00	1.4361	X1CrNiSi 18 15	X1CrNiSi18-15-4		41 Cr 4	41Cr4	1.8977	StE 480.7 TM	L485MB
	9 SMn 28	11SMn30	1.4362	X2CrNiN 23 4	X2CrNiN23-4	1	28 CrS 4	28CrS4	1.8978	StE 550.7 TM	L555MB
	9 SMnPb 28	11SMnPb30	1.4401	X5CrNiMo 17 122	X5CrNiMo17-12-2	1.7037		34CrS4			
1.0721	10 S 20 10 S Pb 20	10S20 10SPb20	1.4404	X2CrNiMo 17132	X2CrNiMoN25-7-4	1.7038		37CrS4 41CrS4			
1.0722	35 S 20	35S20	1.4410 1.4418	X10CrNiMo 18 9 X4CrNiMo 16 5	X2CrNiMoN25-7-4 X4CrNiMo16-5-1	1.7039		16MnCr5			
1.0726	45 S 20	46S20			X2CrNiMo18-14-3						
1.0/2/	7J U ZU	70020	1.4435	X2CrNiMo 18143	AZUTINIIVIU18-14-3	1.7139	16 MnCrS 5	16MnCrS5			

Tono atropath			
Tens. strength (N/mm²)	HRC	HB30	HV10
240		71	75
255		76	80
270		81	85
285		86	90
305		90	95
320		95	100
335		100	105
350		105	110
370		109	115
385		114	120
400		119	125
415		124	130
430		128	135
450		133	140
465		138	145
480		143	150
495		147	155
510		152	160
530		157	165
545		162	170
560		166	175
575		171	180
595		176	185
610		181	190
625		185	195
640		190	200
660		195	205
675		199	210
690		204	215
705		209	220
720		214	225
740		219	230
755		223	235
770		228	240
785		233	245
800	22	238	250
820	23	242	255
835	24	247	260
860	25	255	268
870	25 26	258	272
900	20 27	266	280
920	2 <i>1</i> 28	273	287
940	26 29	278	293
940	30	276 287	293 302
970	30	287 295	302
1020	32	301	317
1050	33	311	327
1080	34	319	336
1110	35 36	328	345
1140	36	337	355
1170	37	346	364

Tens. strength (N/mm²)	HRC	HB30	HV10
1200	38	354	373
1230	39	363	382
1260	40	372	392
1300	41	383	403
1330	42	393	413
1360	43	402	423
1400	44	413	434
1440	45	424	446
1480	46	435	458
1530	47	449	473
1570	48	460	484
1620	49	472	497
1680	50	488	514
1730	51	501	527
1790	52	517	544
1845	53	532	560
1910	54	549	578
1980	55	567	596
2050	56	584	615
2140	57	607	639
2180	58	622	655
	59		675
	60		698
	61		720
	62		745
	63		773
	64		800
	65		829
	66 67		864 900
	68		940
	00		940


GUHRING 105

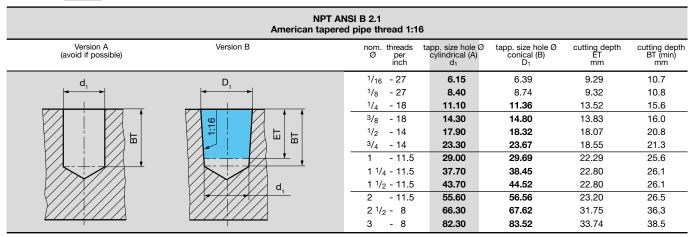
Threading tools

Page	
<u>109</u>	Tapping size holes for thread cutting and thread forming
<u>112</u>	DIN characteristic features
<u>115</u>	Comparison of Standards
<u>116</u>	The characteristics of different thread types
<u>118</u>	General information for tapping
<u>118</u>	Definitions and angles, centres and flute forms
<u>119</u>	Chamfer forms, selection and application
<u>121</u>	Tolerance fields
<u>122</u>	Taps for ISO metric threads
<u>123</u>	Application examples
<u>124</u>	Surface treatments and coatings for threading tools
<u>126</u>	Application recommendations for Guhring coatings
<u>127</u>	Troubleshooting
<u>129</u>	General information thread forming
<u>129</u>	Thread production by pressure deformation
<u>130</u>	"Profile"- Guhring's new fluteless tap generation
<u>131</u>	Definitions, angles, centres, thread tolerances and fits
<u>132</u>	Tapping size hole diameter
<u>133</u>	Lubrication for thread forming
<u>134</u>	Troubleshooting
<u>135</u>	General information for thread milling
<u>135</u>	Advantages
<u>136</u>	The Guhring thread milling cutter types
<u>137</u>	Difference between taps/fluteless taps and thread milling cutters
<u>138</u>	Differentiating between two milling processes
<u>139</u>	Thread milling cutter modifications
<u>140</u>	Thread milling programming
<u>142</u>	Clamping chucks for thread milling
<u>143</u>	Practical application of thread milling cutters
<u>144</u>	Processing example
<u>151</u>	Application recommendations
<u>152</u>	Troubleshooting
<u>153</u>	Machining with thread milling cutters
<u>154</u>	Special thread milling cutters
<u>155</u>	Re-grinding and re-coating

Tapping size holes for thread cutting

	Std. IS	O metric DIN 13		s			ISC		fine threads N 13						JNC thre		
nom. Ø	pitch P	tapping size hole Ø		liameter nread 6H*	Ø P	apping size hole Ø		ameter read 6H	nom. x pitch Ø P	tapping size hole Ø		iameter rread 6H	nom. t	hreads	tapping size hole Ø		liameter hread 2B
	mm	DIN 336 mm	min. mm	max. mm	mm	DIN 336 mm	min. mm	max. mm	mm	DIN 336 mm	min. mm	max. mm		per inch	DIN 336 mm	min. mm	max. mm
M 1	0.25	0.75	0.729	0.785	M 2.5 x 0.35	2.15	2.121	2.221	M 22 x 1.50	20.50	20.376	20.676	Nr. 1	- 64	1.55	1.425	1.580
M 1.1	0.25	0.85	0.829	0.885	M 3.0 x 0.35	2.65	2.621	2.721	M 22 x 2.00	20.00	19.835	20.210	Nr. 2	- 56	1.85	1.694	1.872
M 1.2	0.25	0.95	0.929	0.985	M 3.5 x 0.35	3.15	3.121	3.221	M 24 x 1.00	23.00	22.917	23.153	Nr. 3	- 48	2.10	1.941	2.146
M 1.4	0.30	1.10	1.075	1.142	M 4.0 x 0.50	3.50	3.459	3.599	M 24 x 1.50	22.50	22.376	22.676	Nr. 4	- 40	2.35	2.157	2.385
M 1.6	0.35	1.25	1.221	1.321	M 4.5 x 0.50	4.00	3.959	4.099	M 24 x 2.00	22.00	21.835	22.210	Nr. 5	- 40	2.65	2.487	2.698
M 1.8	0.35	1.45	1.421	1.521	M 5.0 x 0.50	4.50	4.459	4.599	M 25 x 1.00	24.00	23.917	24.153	Nr. 6	- 32	2.85	2.642	2.896
M 2	0.40	1.60	1.567	1.679	M 5.5 x 0.50	5.00	4.959	5.099	M 25 x 1.50	23.50	23.376	23.676	Nr. 8	- 32	3.50	3.302	3.531
M 2.2	0.45	1.75	1.713	1.838	M 6.0 x 0.75	5.20	5.188	5.378	M 25 x 2.00	23.00	22.835	23.210	Nr. 10	- 24	3.90	3.683	3.937
M 2.5	0.45	2.05	2.013	2.138	M 7.0 x 0.75	6.20	6.188	6.378	M 27 x 1.00	26.00	25.917	26.153	Nr. 12	- 24	4.50	4.343	4.597
М 3	0.50	2.50	2.459	2.599	M 8.0 x 0.50	7.50	7.459	7.599	M 27 x 1.50	25.50	25.376	25.676	1/4	- 20	5.10	4.978	5.258
M 3.5	0.60	2.90	2.850	3.010	M 8.0 x 0.75	7.20	7.188	7.378	M 27 x 2.00	25.00	24.835	25.210	5/16	- 18	6.60	6.401	6.731
M 4	0.70	3.30	3.242	3.422	M 8.0 x 1.00	7.00	6.917	7.153	M 28 x 1.00	27.00	26.917	27.153	3/8	- 16	8.00	7.798	8.153
M 4.5	0.75	3.70	3.688	3.878	M 9.0 x 0.75	8.20	8.188	8.378	M 28 x 1.50	26.50	26.376	26.676	7/16	- 14	9.40	9.144	9.550
M 5	0.80	4.20	4.134	4.334	M 9.0 x 1.00	8.00	7.917	8.153	M 28 x 2.00	26.00	25.835	26.210	1/2	- 13	10.80	10.592	11.024
M 6	1.00	5.00	4.917	5.153	M 10 x 0.75	9.20	9.188	9.378	M 30 x 1.00	29.00	28.917	29.153	9/16	- 12	12.20	11.989	12.446
M 7	1.00	6.00	5.917	6.153	M 10 x 1.00	9.00	8.917	9.153	M 30 x 1.50	28.50	28.376	28.676	5/8	- 11	13.50	13.386	13.868
8 M	1.25	6.80	6.647	6.912	M 10 x 1.25	8.80	8.647	8.912	M 30 x 2.00	28.00	27.835	28.210	3/4	- 10	16.50	16.307	16.840
M 9	1.25	7.80	7.647	7.912	M 11 x 0.75	10.20	10.188	10.378	M 30 x 3.00	27.00	26.752	27.252	7/8	- 9	19.50	19.177	19.761
M 10	1.50	8.50	8.376	8.676	M 11 x 1.00	10.00	9.917	10.153	M 32 x 1.50	30.50	30.376	30.676	1	- 8	22.25	21.971	22.606
M 11	1.50	9.50	9.376	9.676	M 12 x 1.00	11.00	10.917	11.153	M 32 x 2.00	30.00	29.835	30.210	1 1/8	- 7	25.00	24.638	25.349
M 12	1.75	10.20	10.106	10.441	M 12 x 1.25	10.80	10.647	10.912	M 33 x 1.50	31.50	31.376	31.676	1 1/4		28.00	27.813	28.524
M 14	2.00	12.00	11.835	12.210	M 12 x 1.50	10.50	10.376	10.676	M 33 x 2.00	31.00	30.835	31.210	1 3/8		30.75	30.353	31.115
M 16	2.00	14.00	13.835	14.210	M 14 x 1.00	13.00	12.917	13.153	M 33 x 3.00	30.00	29.752	30.252	1 1/2	- 6	34.00	33.528	34.290
M 18	2.50	15.50	15.294	15.744	M 14 x 1.25	12.80	12.647	12.912	M 35 x 1.50	33.50	33.376	33.676	1 3/4	- 5	39.50	38.938	39.802
M 20	2.50	17.50	17.294	17.744	M 14 x 1.50	12.50	12.376	12.676	M 36 x 1.50	34.50	34.376	34.676	2	- 4.5	45.00	44.679	45.593
M 22	2.50	19.50	19.294	19.744	M 15 x 1.00	14.00	13.917	14.153									
M 24	3.00	21.00	20.752	21.252	M 15 x 1.50	13.50	13.376	13.676									
M 27	3.00	24.00	23.752	24.252	M 16 x 1.00	15.00	14.917	15.153									
M 30	3.50	26.50	26.211	26.771	M 16 x 1.25	14.80	14.647	14.912									
M 33	3.50	29.50	29.211	29.771	M 16 x 1.50	14.50	14.376										
M 36	4.00	32.00	31.670	32.270	M 17 x 1.00	16.00	15.917	16.153									
M 39	4.00	35.00	34.670	35.270	M 17 x 1.50	15.50	15.376										
M 42	4.50	37.50	37.129	37.799	M 18 x 1.00	17.00	16.917	17.153									
M 45	4.50	40.50	40.129	40.799	M 18 x 1.50	16.50	16.376	16.676									
M 48	5.00	43.00	42.587	43.297	M 20 x 1.00	19.00	18.917	19.153									
M 52	5.00	47.00	46.587	47.297	M 20 x 1.50	18.50	18.376	18.676									
M 56	5.50	50.50	50.046	50.796	M 20 x 2.00	18.00	17.835	18.210									
					M 22 x 1.00	21.00	20.917	21.153									

^{*} M 1.1 up to M 1.4 tapping size hole of int. thread 5H


			MJ thread DIN ISO 58					U	INC threa ISO 3161					U	NF thread		
nom. Ø	х	pitch P	tapping size hole Ø		liameter nread 5H*	nom. Ø		threads	tapping size hole Ø		core diameter of int. thread 3B			threads	tapping size hole Ø		liameter hread 3B
		mm	DIN 336 mm	min. mm	max. mm			per inch	DIN 336 mm	min. mm	max. mm			per inch	DIN 336 mm	min. mm	max. mm
MJ 3	х	0.50	2.60	2.513	2.653	Nr. 6	-	32	2.85	2.733	2.939	Nr. 6	-	40	3.00	2.888	3.053
MJ 4	х	0.70	3.40	3.318	3.498	Nr. 8	-	32	3.55	3.393	3.599	Nr. 8	-	36	3.60	3.480	3.663
MJ 5	х	0.80	4.30	4.221	4.421	Nr. 10	-	24	4.00	3.795	4.064	Nr. 10	-	32	4.20	4.054	4.255
MJ 6	Х	0.50	5.55	5.513	5.625	Nr. 12	-	24	4.60	4.455	4.704	Nr. 12	-	28	4.75	4.602	4.816
MJ 6	х	0.75	5.35	5.269	5.419	1/4	-	20	5.30	5.113	5.387	1/4	-	28	5.60	5.466	5.662
MJ 6	Х	1.00	5.10	5.026	5.216	5/16	-	18	6.75	6.563	6.833	⁵ / ₁₆	-	24	7.00	6.906	7.109
MJ 8	Х	0.50	7.55	7.513	7.625	3/8	-	16	8.20	7.978	8.255	3/8	-	24	8.60	8.494	8.679
MJ 8	Х	0.75	7.35	7.269	7.419	⁷ / ₁₆	-	14	9.60	9.346	9.639	7/16	-	20	10.00	9.876	10.084
MJ 8	Х	1.00	7.10	7.026	7.216	1/2	-	13	11.00	10.798	11.095	1/2	-	20	11.60	11.463	11.661
MJ 8	Х	1.25	6.90	6.782	6.994	9/16	-	12	12.40	12.228	12.482	9/16	-	18	13.00	12.913	13.122
MJ 10	Х	1.00	9.10	9.026	9.216	5/8	-	11	13.80	13.627	13.904	5/8	-	18	14.60	14.501	14.702
MJ 10	Х	1.25	8.90	8.782	8.994												
MJ 10	х	1.50	8.60	8.539	8.775												
MJ 12	х	1.75	10.40	10.295	10.560												
MJ 16	х	2.00	14.20	14.051	14.351												

M 22 x 1.00 **21.00** 20.917 21.153

^{*} MJ3 x 0.50 up to MJ 5 x 0.80 tapping size hole of int. thread 6H

						W (White				•	itworth) IN-ISO 2			Stee		oured coi o DIN 40		reads
nom. threads	tapping size hole Ø		ameter read 2B	nom. t Ø	hreads	tapping size hole Ø		liameter thread	nom. 1	hreads	tapping size hole Ø		iameter thread	nom. Ø	threads	tapping size hole Ø		iameter thread
per inch	DIN 336 mm	min. mm	max. mm	inch	per inch	DIN 336 mm	min. mm	max. mm	inch	per inch	DIN 336 mm	min. mm	max. mm		per inch	DIN 336 mm	min. mm	max. mm
Nr. 1 - 72	1.55	1.473	1.610	W 1/16	60	1.20	1.045	1.230	G 1/16	28	6.80	6.561	6.843	Pg 7	20	11.40	11.280	11.430
Nr. 2 - 64	1.85	1.755	1.910	$W^{3/32}$	48	1.80	1.704	1.912	G 1/8	28	8.80	8.566	8.848	Pg 9	18	14.00	13.860	14.010
Nr. 3 - 56	2.15	2.024	2.197	W 1/8	40	2.50	2.362	2.591	G 1/4	19	11.80	11.445	11.890	Pg 11	18	17.30	17.260	17.410
Nr. 4 - 48	2.40	2.271	2.459	$W^{5}/_{32}$	32	3.20	2.952	3.214	G 3/8	19	15.25	14.950	15.395	Pg 13.	5 18	19.00	19.060	19.210
Nr. 5 - 44	2.70	2.550	2.741	$W^{3/16}$	24	3.60	3.407	3.745	G 1/2	14	19.00	18.631	19.172	Pg 16	18	21.30	21.160	21.310
Nr. 6 - 40	2.95	2.819	3.023	W 7/ ₃₂	24	4.50	4.201	4.539	G 5/8	14	21.00	20.587	21.128	Pg 21	16	26.90	26.780	27.030
Nr. 8 - 36	3.50	3.404	3.607	W 1/ ₄	20	5.10	4.724	5.156	G 3/4	14	24.50	24.117	24.658	Pg 29	16	35.50	35.480	35.730
Nr. 10 - 32	4.10	3.962	4.166	W 5/ ₁₆	18	6.50	6.130	6.590	G ⁷ / ₈	14	28.25	27.877	28.418	Pg 36	16	45.50	45.480	45.730
Nr. 12 - 28	4.60	4.496	4.724	W 3/8	16	7.90	7.492	7.987	G 1	11	30.75	30.291	30.931	Pg 42	16	52.50	52.480	52.730
1/4 - 28	5.50	5.359	5.588	$W^{7/16}$	14	9.20	8.789	9.330	G 11/8	11	35.50	34.939	35.579	Pg 48	16	57.80	57.780	58.030
⁵ / ₁₆ - 24	6.90	6.782	7.036	$W^{1/2}$	12	10.50	9.989	10.591	G 11/4	11	39.50	38.952	39.592					
³ / ₈ - 24	8.50	8.382	8.636	W 9/ ₁₆	12	12.00	11.577	12.179	G 11/2	11	45.25	44.845	45.485					
⁷ / ₁₆ - 20	9.90	9.728	10.033	W ⁵ / ₈	11	13.50	12.918	13.558	G 13/ ₄	11	51.00	50.788	51.428					
1/2 - 20	11.50	11.328	11.608	$W^{3/4}$	10	16.25	15.797	16.483	G 2	11	57.00	56.656	57.296					
⁹ / ₁₆ - 18	12.90	12.751	13.081	$W^{7/8}$	9	19.25	18.611	19.353										
5/8 - 18	14.50	14.351	14.681	W 1	8	22.00	21.334	22.147										
³ / ₄ - 16	17.50	17.323	17.678	$W 1^{1}/_{8}$	7	24.50	23.928	24.832										
⁷ / ₈ - 14	20.40	20.269	20.650	W 1 1/ ₄	. 7	27.75	27.103	28.007										
1 - 12	23.25	23.114	23.571	$W 1^{3}/_{8}$		30.50	29.504	30.528										
1 1/8 - 12	26.50	26.289	26.746	W $1^{1/2}$		33.50	32.679	33.703										
1 1/4 - 12	29.50	29.464	29.921	W 1 ⁵ / ₈		35.50	34.769	35.963										
1 ³ / ₈ - 12	32.75	32.639	33.096	W 13/ ₄	. 5	39.00	37.944	39.138										
1 1/2 - 12	36.00	35.814	36.271	W 2	4.5	44.50	43.571	44.877										

Metric/	letric/metric fine EG-threads (EG M14 x 1.25) for wire thread inserts DIN 8140					for w			G-threads ASME B1			for w	•	•	G-threads ASME B18	3.29.1
nom. Ø	хр	pitch P	tapping size hole Ø		liameter thread	nom. Ø	threads	tapping size hole Ø		diameter t. thread		m. Ø	threads	tapping size hole Ø		diameter . thread
	ı	mm	DIN 336 mm	min. mm	max. mm		per inch	DIN 336 mm	min. mm	max. mm			per inch	DIN 336 mm	min. mm	max. mm
EG M 4	4 (0.70	4.20	4.152	4.292	EG Nr. 6	- 32	3.80	3.678	3.879	EG	Nr. 6	- 40	3.70	3.644	3.818
EG M 5	5 (0.80	5.25	5.174	5.334	EG Nr. 8	- 32	4.40	4.338	4.524	EG	Nr. 8	- 36	4.40	4.321	4.498
EG M 6	3 1	1.00	6.30	6.217	6.407	EG Nr. 10	- 24	5.20	5.055	5.283	EG	Nr. 1	0 - 32	5.10	4.999	5.184
EG M 8	3 1	1.25	8.40	8.271	8.483	EG Nr. 12	- 24	5.80	5.715	5.944	EG	Nr. 1	2 - 28	5.70	5.682	5.809
EG M10) 1	1.50	10.50	10.324	10.560	EG 1/4	- 20	6.70	6.624	6.868	EG	1/4	- 28	6.60	6.546	6.721
EG M12	2 1	1.75	12.50	12.379	12.644	EG 5/16	- 18	8.40	8.242	8.489	EG	⁵ /16	- 24	8.25	8.166	8.352
EG M14	1 x 1	1.25	14.40	14.271	14.483	EG 3/8	- 16	10.00	9.868	10.127	EG	3/8	- 24	9.80	9.754	9.931
EG M16	6 2	2.00	16.50	16.433	16.733	EG ⁷ / ₁₆	- 14	11.60	11.506	11.783	EG	⁷ / ₁₆	- 20	11.50	11.389	11.585
						EG 1/2	- 13	13.30	13.122	13.393	EG	1/2	- 20	13.10	12.974	13.172
						EG 9/16	- 12	14.90	14.747	15.032	EG	9/16	- 18	14.70	14.592	14.798
						EG 5/8	- 11	16.50	16.375	16.673	EG	5/8	- 18	16.25	16.180	16.386

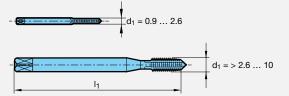
Recommended tapping size holes for thread forming

		Std. IS	O metr DIN 1		ads							IS		fine N 13	threads						
nom. Ø	pitch	tapp. size hole Ø	tapp.			re Ø hread 7H*	nom. Ø	x pitch	tapp. size hole Ø	tapp hol		cor of int. th	re Ø iread 7H*	n	om. x pito Ø	h tar	ze	tapp.			re Ø iread 7H*
m	ım	mm	min. mm	max. mm	min. mm	max. mm		mm	mm	min. mm	max. mm	min. mm	max. mm		mm	m		min. mm	max. mm	min. mm	max. mm
M1	0.25	0.90	0.89	0.92	0.729	0.819	M 2.5	x 0.35	2.35	2.35	2.38	2.121	2.221	М	17 x 1.5	0 16	30 1	16.26	16.38	15.376	15.751
M1.2	0.25	1.10	1.09	1.12	0.929	1.019	М3	x 0.35	2.85	2.85	2.88	2.621	2.721	М	18 x 1.0	00 17	55 1	17.52	17.62	16.917	17.217
M1.4	0.30	1.28	1.27	1.30	1.075	1.181	M 4	x 0.35	3.85	3.85	3.88	3.621	3.721	М	18 x 1.5	0 17 .	30 1	17.26	17.38	16.376	16.751
M1.6	0.35	1.46	1.45	1.48	1.221	1.346	M 4	x 0.50	3.80	3.78	3.83	3.459	3.639	М	18 x 2.0	00 17	10 1	17.05	17.20	15.835	16.310
M1.7	0.35	1.56	1.55	1.58	1.321	1.446	M 5	x 0.50	4.80	4.78	4.83	4.459	4.639	М	20 x 1.0	00 19	55 1	19.52	19.62	18.917	19.217
M1.8	0.35	1.66	1.65	1.68	1.421	1.546	M 5.5	x 0.50	5.30	5.28	5.33	4.959	5.139	М	20 x 1.5	0 19	30 1	19.26	19.38	18.376	19.751
M 2	0.40	1.85	1.84	1.88	1.567	1.679	M 6	x 0.75	5.65	5.62	5.70	5.188	5.424	М	24 x 1.0	00 23	55 2	23.52	23.62	22.917	23.217
M 2.2	0.45	2.00	2.01	2.05	1.713	1.838	M 7	x 0.75	6.65	6.62	6.70	6.188	6.424	М	24 x 1.5	0 23	30 2	23.26	23.38	22.376	22.751
M 2.5	0.45	2.30	2.28	2.32	2.013	2.138	M 8	x 0.75	7.65	7.62	7.70	7.188	7.424	М	24 x 2.0	00 23.	10 2	23.05	23.20	21.835	22.310
М 3	0.50	2.80	2.78	2.85	2.459	2.639	M 8	x 1.00	7.55	7.52	7.62	6.917	7.217	М	27 x 1.5	0 26	30 2	26.26	26.38	25.376	25.751
M 3.5	0.60	3.25	3.23	3.30	2.850	3.050	M 9	x 0.75	8.65	8.62	8.70	8.188	8.424	M	30 x 1.5	0 29	30 2	29.26	29.38	28.376	28.751
M 4	0.70	3.70	3.68	3.76	3.242	3.466	M 9	x 1.00	8.55	8.52	8.62	7.917	8.217	М	33 x 1.5	0 32 .	30 3	32.26	32.38	31.376	31.751
M 4.5	0.75	4.20					M 10	x 0.75	9.65	9.62	9.70	9.188	9.424	M	36 x 1.5	35 .	30 3	35.26	35.38	34.376	34.751
M 5	0.80	4.65	4.62	4.71	4.134	4.384	M 10	x 1.00	9.55	9.52	9.62	8.917	9.217	M	39 x 1.5	0 38 .	30 3	38.26	38.38	37.376	37.751
M 6	1.00	5.55	5.52	5.62	4.917	5.217	M 10	x 1.25	9.40	9.36	9.47	8.647	8.982	М	42 x 1.5	0 41 .	30 4	41.26	41.38	42.376	42.751
M 7	1.00	6.55	6.52	6.62	5.917	6.217	M 11	x 0.75	10.65	10.62	10.70	10.188	10.424								
8 M	1.25	7.40	7.36	7.47	6.647	6.982	M 11	x 1.00	10.55	10.52	10.62	9.917	10.217								
M 9	1.25	8.40	8.36	8.47	7.647	7.982	M 12	x 1.00	11.55	11.52	11.62	10.917	11.217								
M 10	1.50	9.30	9.26	9.38	8.376	8.751	M 12	x 1.25	11.40	11.36	11.47	10.647	10.982								
M 11	1.50	10.30	10.26	10.38	9.376	9.751	M 12	x 1.50	11.30	11.26	11.38	10.376	10.751								
M 12	1.75	11.20	11.15	11.29	10.106	10.531	M 14	x 1.00	13.55	13.52	13.62	12.917	13.217								
M 14	2.00	13.10	13.05	13.20	11.835	12.310	M 14	x 1.25	13.40	13.36	13.47	12.647	12.982								
M 16	2.00	15.10	15.05	15.20	13.835	14.310	M 14	x 1.50	13.30	13.26	13.38	12.376	12.751								
M 18	2.50	16.90	16.83	17.02	15.294	15.854	M 15	x 1.00	14.55	14.52	14.62	13.917	14.217								
M 20	2.50	18.90	18.83	19.02	17.294	17.854	M 15	x 1.50	14.30	14.26	14.38	13.376	13.751								
M 22	2.50	20.90	20.83	21.02	19.294	19.854	M 16	x 1.00	15.55	15.52	15.62	14.917	15.217								
M 24	3.00	22.70	22.62	22.80	20.752	21.382	M 16	x 1.50	15.30	15.26	15.38	14.376	14.751								
M 27	3.00	25.70	25.62	25.80	23.752	24.382	M 17	x 1.00	16.55	16.52	16.62	15.917	16.217								
M 30	3.50	28.50	28.40	28.60	26.211	26.921	* M 2.	5 x 0.35 ι	up to M 4	1 x 0.35	tapping	size hole o	f int. threa	d 6H							
M 33	3.50	31.50	31.40	31.60	29.211	29.921					5										
M 36	4.00	34.30	34.17	34.40	31.670	32.420															
M 39	4.00	37.30	37.17	37.40	34.670	35.420															

M 42 4.50 **40.10** 39.95 40.20 37.129 37.979 * M 2 up to M 2.5 tapping size hole of int. thread 6H

Tapping size hole diameter tolerance zone for thread forming (to DIN 13, section 50)

Due to the tensile strength it is not necessary to adhere to the tapping size hole diameter tolerance class 6H; tolerance class 7H satisfies the requirement that the flank coverage of external and internal threads should not fall below 0.32 x P. In addition, formed threads generally possess a higher tensile strength in comparison to cut threads thanks to an uninterrupted grain flow and subsequent work hardening.


	UNC-threads ASME B1.1								,	JNF-th					(Whitwo DIN	rth-) pi EN ISC		ad G	
nom. Ø	pitch	tapp. size hole Ø		pp. nole Ø	of int. the	re Ø hread 2B	nom. Ø	pitch	tapp. size hole Ø	ta size h	pp. nole Ø	co of int. t	re Ø hread 2B	nom. Ø	pitch	tapp. size hole Ø	tap size h	p. ole Ø	of int.	
	per inch	mm	min. mm	max. mm	min. mm	max. mm		per inch	mm	min. mm	max. mm	min. mm	max. mm	inch	per inch	mm	min. mm	max. mm	min. mm	max. mm
Nr. 1	- 64	1.68	1.67	1.70	1.425	1.580	Nr. 1	- 72	1.70	1.69	1.72	1.473	1.610	G ¹ / ₁₆	28	7.30	7.28	7.35	6.561	6.843
Nr. 2	- 56	1.98	1.97	2.01	1.694	1.872	Nr. 2	- 64	2.00	1.99	2.03	1.755	1.910	G 1/8	28	9.30	9.28	9.35	8.566	8.848
Nr. 3	- 48	2.28	2.27	2.32	1.941	2.146	Nr. 3	- 56	2.30	2.29	2.34	2.024	2.197	G 1/4	19	12.50	12.48	12.55	11.445	11.890
Nr. 4	- 40	2.55	2.54	2.59	2.157	2.385	Nr. 4	- 48	2.60	2.59	2.63	2.271	2.459	G 3/8	19	16.00	15.98	16.05	14.950	15.395
Nr. 5	- 40	2.90	2.89	2.94	2.487	2.698	Nr. 5	- 44	2.90	2.89	2.93	2.550	2.741	G 1/2	14	20.00	19.98	20.12	18.631	19.172
Nr. 6	- 32	3.15	3.14	3.19	2.642	2.896	Nr. 6	- 40	3.20	3.19	3.24	2.819	3.023	G 5/8	14	22.00	21.98	22.12	20.587	21.128
Nr. 8	- 32	3.80	3.78	3.82	3.302	3.531	Nr. 8	- 36	3.85	3.83	3.88	3.404	3.607	$G^{3/4}$	14	25.50	25.48	25.62	24.117	24.658
Nr. 10	- 24	4.35	4.33	4.39	3.683	3.937	Nr. 10	- 32	4.45	3.43	4.49	3.962	4.166	G 7/8	14	29.25	29.23	29.37	27.877	28.418
Nr. 12	- 24	5.00	4.97	5.03	4.343	4.597	Nr. 12	- 28	5.10	5.07	5.13	4.496	4.724	G 1	11	32.00	31.98	32.15	30.291	30.931
1/4	- 20	5.75	5.72	5.80	4.978	5.258	1/4	- 28	5.95	5.92	5.99	5.359	5.588	G 11/ ₄	11	40.75	40.70	40.85	38.952	39.592
⁵ / ₁₆	- 18	7.30	7.26	7.37	6.401	6.731	⁵ / ₁₆	- 24	7.45	7.42	7.50	6.782	7.036							
3/8	- 16	8.80	8.77	8.88	7.798	8.153	3/8	- 24	9.05	9.02	9.10	8.382	8.682							
⁷ / ₁₆	- 14	10.30	10.27	10.37	9.144	9.550	⁷ / ₁₆	- 20	10.55	10.48	10.58	9.728	10.033							
1/2	- 13	11.80	11.77	11.88	10.592	11.024	1/2	- 20	12.10	12.08	12.18	11.328	11.608							
9/16	- 12	13.30	13.28	13.39	11.989	12.446	⁹ / ₁₆	- 18	13.65	13.61	13.72	12.751	13.081							
5/8	- 11	14.80	14.78	14.90	13.386	13.868	5/8	- 18	15.25	15.21	15.32	14.351	14.681							
3/4	- 10	17.90	17.85	17.97	16.307	16.840	3/4	- 16	18.35	15.30	18.41	17.323	17.678							
7/8	- 9	21.00	20.95	21.10	19.177	19.761	7/8	- 14	21.40	21.35	21.49	20.269	20.650							
1	- 8	24.00	23.95	24.12	21.971	22.606	1	- 12	24.45	24.40	24.54	23.114	23.571							

Characteristic features of the individual standards

DIN 371

in the master standard DIN 2184-1

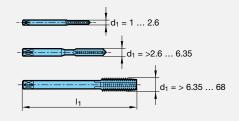
Standard for machine taps with reinforced shank for standard ISO metric threads and ISO metric fine threads. Long design. Shank design in accordance with diameter ranges shown above (mm).

DIN 376

in the master standard DIN 2184-1

Standard for machine taps with reduced shank for standard ISO metric threads. Long design. Diameter range $d_1 = 1.6 \dots 68 \text{ mm}$ ($\leq \emptyset$ M3, shank without square)

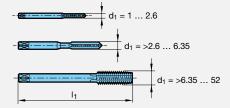
DIN 374


in the master standard DIN 2184-1

Standard for machine taps with reduced shank for ISO metric fine threads. Long design. Diameter range $d_1=3\,\dots\,52$ mm

DIN 352

in the master standard DIN 2184-2

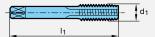

Standard for hand and machine taps for standard ISO metric threads. Short design. Shank design in accordance with diameter ranges shown opposite (mm).

Characteristic features of the individual standards

in the master standard DIN 2184-2

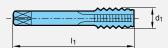
Standard for hand and machine taps for standard ISO metric threads. Short design. Shank design in accordance with diameter ranges shown opposite (mm).

DIN 5156


in the master standard DIN 2184-1

Standard for machine taps for BSP threads to DIN ISO 228 and for BSW threads to DIN 2999. Long design. Diameter ranges: BSP threads G $^{1}/_{16}$ " ... G 4 " BSW threads W $^{1}/_{16}$ "... W 4 "

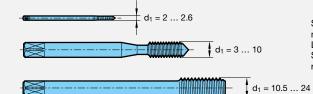
DIN 5157


in the master standard DIN 2184-2

Standard for machine taps for BSP threads to DIN ISO 228 and for BSW threads to DIN EN 10 226-1. Short design. Diameter ranges: BSP threads G $^{1}/_{16}$ "... G 4 " BSW threads W $^{1}/_{16}$ "... W 4 "

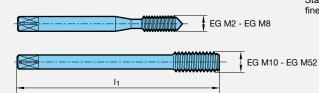
DIN 40 432

in the master standard DIN 2184-2


Standard for machine taps for steel armoured conduit threads to DIN 40 430. Short design. Diameter range:
Pg 7 (12.5 mm) ... Pg 48 (59.3 mm)
Will be replaced by DIN 374 ISO 3 6G.

DIN 2174

in the master standard DIN 2184-1

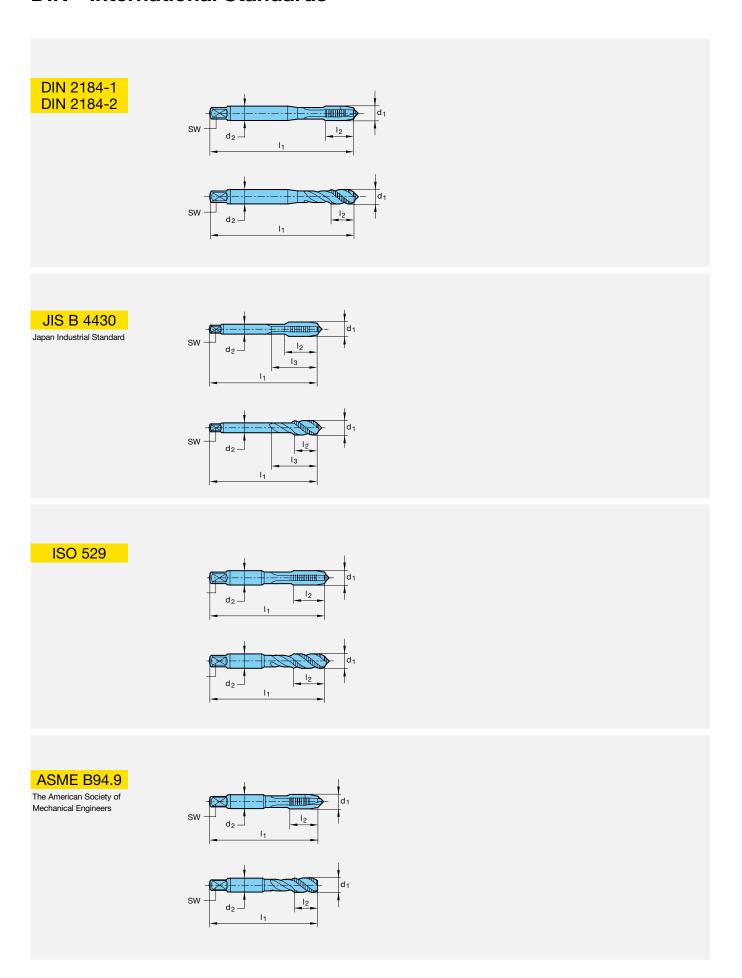

l₁

Standard for fluteless taps for standard ISO metric threads and ISO metric fine threads. Long design.

Shank design in accordance with diameter ranges shown opposite (mm).

DIN 40 435

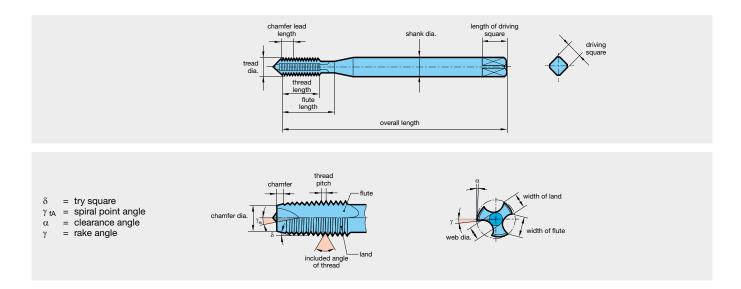
in the master standard DIN 2184-1

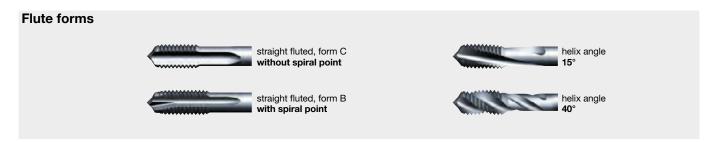


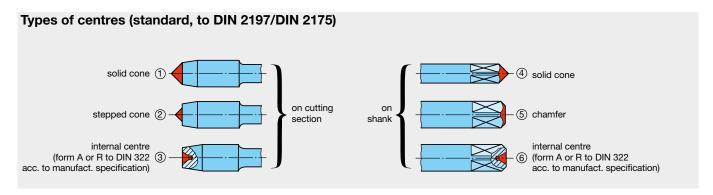
Standard for machine taps for tapped holes (EG) for wire thread inserts as in DIN 8140 for ISO metric threads.

Standard thread tapped holes EG M2 to EG M52 and fine thread tapped holes EG M8 x1 to EG M48 x 3

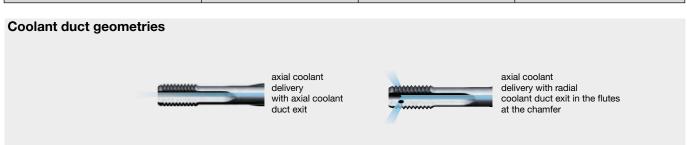
DIN - International Standards

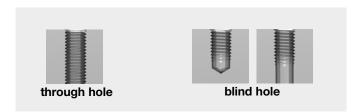


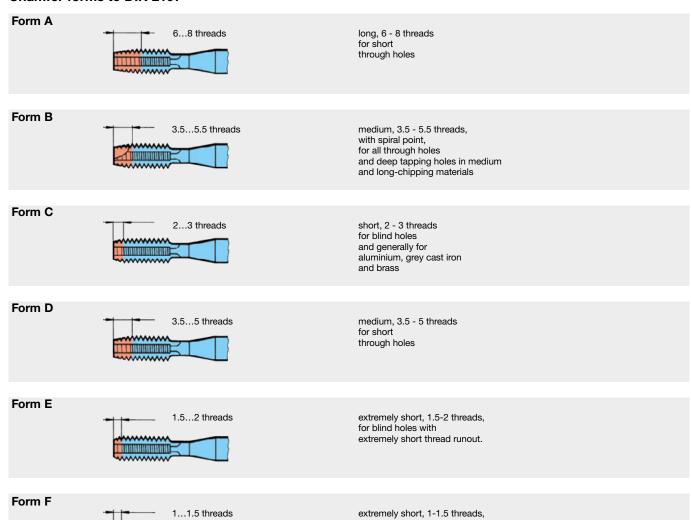

geometry drawing	Standard	application	geome	etry drawing	Standard	application
M ISO-metric thread			MF IS	O-metric fine thread		
P 60° C 2 D 2 D 2 D 2 D 2 D 2 D 2 D 2 D 2 D 2	DIN 13-1	General standard thread		P	DIN 13-2 to DIN 13-11	General fine thread
UNC Unified National Coarse Thread			UNF L	Jnified National Fine Thread		
P 60° 00° D	ASME B1.1	General UN standard thread		P 60° 0 2 D 2 C 2 D 2 D	ASME B1.1 ISO-metric trapezoidal thread	General UN Fine Thread
UNEF Unified National Extra Fine Three	ead		UNS U	Unified Special Thread		
d2, D2	ASME B1.1	General UN Extra Fine Thread		20°.50	ASME B1.1	General UN Special Thread
G Cylindrical Pipe Thread without thre connections	ad sealing		PG ste	eel conduit thread		
P 55°	DIN EN ISO 228-1	Threads for pipes, pipe con- nections and fittings		P 80° - 08	DIN 40430 cylindri- cal round thread	electrical engi- neering
TR ISO-metric trapezoidal thread			S met	ric saw thread		
P	DIN 103	General, draw collets, rolling stock	+	P 20 20 20 20 20 20 20 20 20 20 20 20 20	DIN 513	when absorbing uni-directional forces
W Cylindrical Whitworth Thread			W Wh	itworth Taper Thread		
55° P 20 = 20 = 20 = 20 = 20 = 20 = 20 = 20	DIN 477	Side connector and accessories for gas bottle valves	rel	lieved cone line P=1,814 3°26′ 55° 3:25′ thread axis	DIN 477	Threaded con- nection in gas cylinder bottles for valves
NPT American Standard Pipe Threads tapered for sealing	<u> </u>			American Standard Pipe Threaded for dry sealing	<u> </u>	
1:16 95 P 1°47'	ANSI/ ASME B1.20.1	pipe threads and fittings	1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1	S I D	ANSI B1.20.3	pipe threads and fittings



geometry drawing	Standard	application	geometry drawing	Standard	application
BSW cylindrical Whitworth thread		_	BSF Whitworth fine thread cylindrical		
P 55° 27 27 27 27 27 27 27 27 27 27 27 27 27	B.S. 84 British Standard	Threads for pipes, pipe connections and fittings	P 55° d 5	B.S. 84 British Standard Fine	Threads for pipes, pipe connections and fittings
BSP pipe thread cylindrical (identical t	to G)		BSPT pipe thread tapered (identical to	Rc)	
P 55° 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	B.S. 93 British Standard	Threads for pipes, pipe connections and fittings	1:16 9 P 1°47' 27°30 55°	B.S. 93 British Standard	Internal thread for pipe threads and fittings
R Whitworth pie thread tapered extern	nal thread		Rp Whitworth pipe thread cylindrical in	nternal thread	1
1:16 P (70 C) 2F	DIN EN 10226-1 (based on ISO 7-1) replace- ment for DIN 2999-1	External thread for pipe threads and fittings (for in the thread sealing connections)	P 555°	DIN EN 10226-1 (based on ISO 7-1) Replace- ment for DIN 2999-1	Internal thread for pipe threads and fittings (for in the thread sealing connections)
Rc Whitworth pipe thread tapered inte	ernal thread		RD cylindrical round thread		
P 1°47′ 1:16 (7) (7) (7) (7) (7) (7) (7) (7) (7) (7)	DIN ISO 10226-2 (hardly used in Europe, replaceable with pipe threads to ISO 7-1)	Internal thread for pipe threads and fittings (for in the thread sealing connections)	30° P R1 20 20 20 20 20 20 20 20 20 20 20 20 20	DIN 405	General, load hook, mining, food industry
MJ thread metric thread			UNJ inch thread		
rounded 60°	DIN ISO 5855-1	For the aero- space industry	rounded P 60° C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C	ISO 3161	For the aero- space industry
Vg valve thread	1		MSG lock nut thread	L	L
60° P P Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	DIN 7756	Valves for car tyres manifold block	ramp 30°	Guhring standard	Self-locking thread transmission housing etc.
MFS					
P 20 20 20	DIN 8141	Interference fits in Aluminium-cast alloys	external thread internal thread play		




	Centre on cu	itting section	
Thread dia. range mm	with chamfer forms A, C, D, E	with chamfer form B	Centre on shank
≤ 4.2	1)	1)	456
> 4.2 5.6	12	1	456
> 5.6 10.0	123	123	456
> 10.0	3	3	6

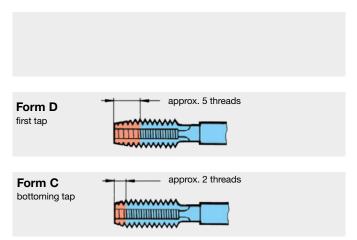


When cutting internal threads, all the machining is carried out by the cutting teeth of the chamfer. Therefore, a decision on the best type of chamfer form has to be carefully made as both tool life and quality of thread are thereby greatly affected.

Generally speaking, the form and length of chamfer depend on the type of hole to be tapped. The tapping of through holes does not normally give rise to any difficulties whereas the production of blind holes can create certain problems associated with the need to evacuate swarf in the reverse direction to the feed, i.e. up to the flutes of the tap and then cut off such swarf when the tap is reversed out of the hole. The length of chamfer is determined by taking into account various conflicting factors. To avoid overloading, premature bluntness and oversize threads the number of chamfer cutting threads must not be kept too low. A too long chamfer lead, however, increases the torque and thus the danger of breakage. The spiral point with form B ensures a chip removal always in the direction of feed.

Chamfer forms to DIN 2197

for blind holes with extremely short thread runout. Avoid use if possible.



Chamfer forms, selection and application

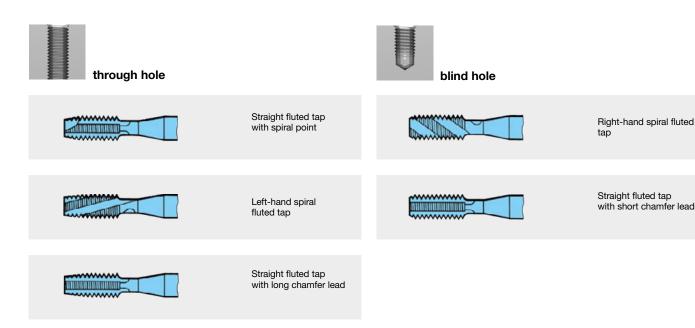
Chamfer lead length for sets of 3 taps

Form D second tap approx. 4 threads Form C bottoming tap

Chamfer lead length for sets of 2 taps

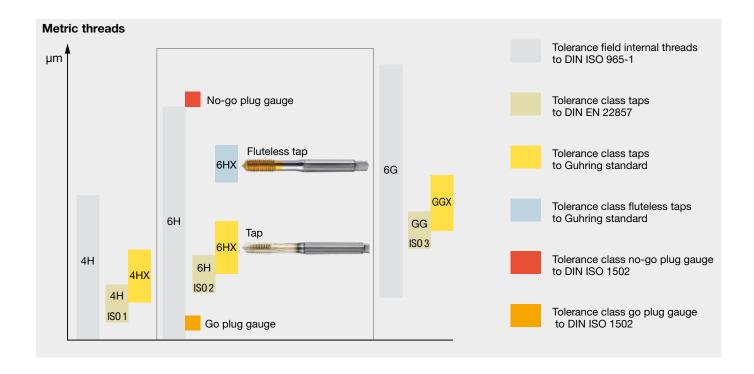
Application recommendations

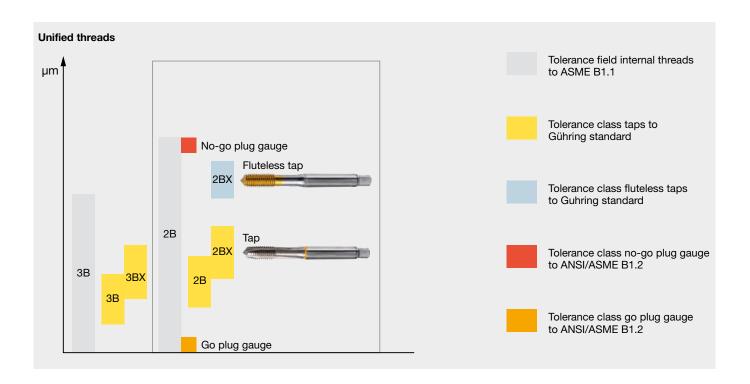
While in the first instance, the type of tapped hole required determines the chamfer, generally the tap geometry - i.e. form, number and direction of flutes, cutting angle, etc. - depend on the material to be machined and on the application. Basically, taps up to M16 for tapping ISO metric threads or for the engineering industry in general, have 3 flutes, and above this size 4 or more flutes.


Taps with left-hand flutes and taps with spiral points remove the chips in the cutting direction or direction of feed and are therefore especially suitable for tapping through holes. Taps with straight flutes and long chamfer lead (form D) also give good results.

As far as blind holes are concerned we recommend taps with right-hand spiral flutes or straight fluted taps with a short chamfer lead length. Tools with right-hand spiral flutes have the chip flow in the backward direction, i.e. up the flutes. The

chamfer lead length is designed in such a way so that during the return movement chips do not jam and are reliably sheared off.


The tapping of aluminium, grey cast iron and brass requires taps with a short chamfer lead length, regardless of whether through or blind holes are required. In these materials a long chamfer lead length would act as a core drill with chip breaker grooves and would only drill the tapping size hole to the major diameter instead of cutting a thread.


Straight fluted taps without spiral point are general purpose tools and have the disadvantage of not showing optimum results in particular materials. It's well worth the effort to take the trouble of ascertaining the most suitable tool for any given metal-cutting task.

Tolerance fields to DIN EN 22857

Taps for ISO metric threads DIN EN 22857 (extract)

Thread clearances and fits

Fits between internal and external threads are separated by a diagonal stroke, as for example 6H/6g (internal/external thread). The fit has to be selected in conjunction with the appropriate thread connection.

The tolerance zones of the tolerance classes fine, medium and coarse are allocated to three screw-in lengths short S), normal (N) and long (L). Generally, the following rules apply for selecting a tolerance class:

Fine tolerance zone (S):

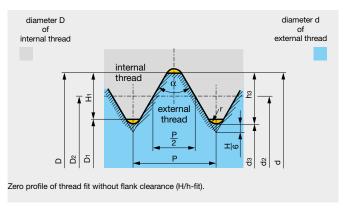
For precision threads, when only a small variation in the fit is permitted.

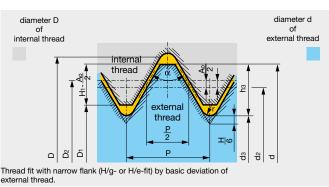
Medium tolerance zone (N):

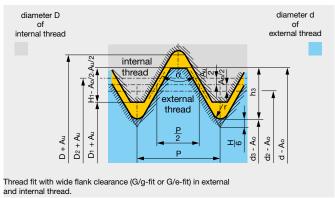
General application

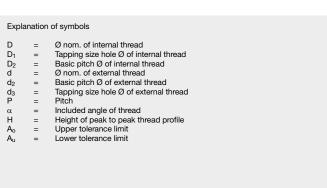
Coarse tolerance zone (L):

There are no special precision requirements and in cases where production difficulties may occur, e.g. thread production in hot-rolled rods, deep blind holes or plastic components.


Screw-in lengths


The quality of thread connection is also affected by the screwin length. The ISO tolerance system was, especially as regards the pitch diameter, divided into three groups, i.e.


S (Short) = short screw-in length
N (Normal) = normal screw-in length
L (Long) = long screw-in length


The following fit should be selected for normal screw-in length N: To ensure a tighter fit of thread connections, we recommend for short screw-in lengths a narrower fit. As far as long screw-in lengths are concerned, fits with a larger tolerance must be used to compensate for pitch deviations.

Thread fits with different flank clearance

Hard machining taps for hardened steel (45 - 55 HRC)

For tapping operations in materials with a tensile strength in excess of 1200 N/mm² we have developed a HSS-E-PM tap with TiCN coating.

The special design makes the process reliable production of threads in hard materials possible and provides excellent tool life.

Suitable for applications in the mold and die industry as well as for various machine or automotive components following heat treatment.

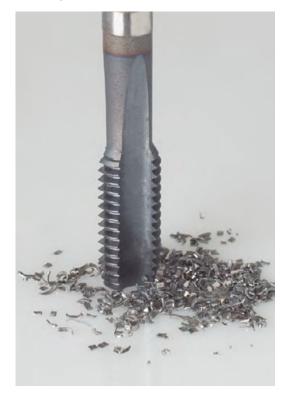
Recommended cutting speed vc = 2 - 8 m/min dependent on the hardness of the component.

Process reliable thread production thanks to short chips

In order to achieve absolute process reliability and a long tool life in series production of high tensile strength steels (850-1250 N/mm²), as for example a crankshaft, short chips are essential. This is only possible in combination with bright flutes / corrections. For this, Guhring provides the ideal solution in the standard range with Guhring nos. 1188, 1194 and 1200.

Universal taps with coolant ducts for short-chipping materials (GG, AI, steel)

Usually, with a tap the chips are evacuated from a blind hole via the spiral flutes. Cast iron, AlSi-alloys, brass and copper alloys are short-chipping materials. Straight-fluted taps are applied for such materials. With taps with coolant ducts, the coolant evacuates the short chips from the blind hole.


Our new straight-fluted M taps (Guhring no. 4448) and MF taps (Guhring no. 4472) with coolant ducts are especially suitable for short-chipping materials.

Evacuating long chips from steel components via the spiral flutes is an increasing problem.

Consequently, the aim is to produce short chips with straightfluted taps and evacuate them from the blind hole with the cooling lubricant.

The tap with IC in the machine spindle achieves an improved tool life and surface quality of the thread.

Typical applications are the machining of gearboxes, cylinder blocks and heads, crankshafts, pump housings, hydraulic components etc.

Bright surface finish

Our high speed steel or own carbide production tools offer good basic characteristics for the machining of various materials.

Steam tempered surface finish

When steam tempering, the border zones of steel surfaces are chemically modified in the µm range, thereby developing a crystalline iron oxide coating (3-10 µmm). These surfaces improve the reactional behaviour of the tools. Thanks to this surface transition the lubricant / coolant adheres better to the tool. This procedure is normally applied for the machining of carbon steel that tends to develop built up edges and cold welding at low cutting speeds. An additional nitriding of bright tools ensures an increased hardness of the surface thanks to the incorporation of nitrogen which also makes abrasive applications possible.

TiN-coating

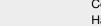
Max. application temperature: < 600° C

Colour: Yellow gold Hardness: 2300 HV0.05

The TiN-coating, introduced by Guhring in the early 1980's displays, especially in thread production, good performance characteristics, in this area it is applied as proven broad band coating.

TiCN-coating

Max. application temperature: < 600° C


Colour: Grey violet Hardness: 3000 HV0.05

An additional incorporation of carbon increases the toughness and hardness of TiCN and possesses a lower friction coefficient than the TiN-coating. Thanks to its wear-resistance it is especially suitable for

abrasive applications.

TiAIN-coating

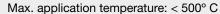
Max. application temperature: < 800° C

Colour: Violet

Hardness: 3300 HV0.05

The classic TiAIN-coating provides higher hardness values and at the same time a better thermal resistance in comparison to the TiN and TiCN-coating, in addition it is very well suited for applications in cast iron and for the general machining of steel.

SIRIUS-coating



Max. application temperature: < 900° C

Colour: Pale gold Hardness: 3400 HV0.05

Sirius is a multi-layer coating. Due to its TiAIN component it displays a higher wear resistance and at the same time a lower tendency to built up edges. It is especially suitable for the machining of through hole threads in stainless steel.

Carbo-coating

Colour: Grey black Hardness: 5000 HV0.05

The carbon (CARBO) coating (ta-C) opens a broad field of application the range of non-ferrous metals. Carbo can be applied for tapping, fluteless tapping and for the machining of aluminium cast iron (<12% Si) and aluminium wrought alloys, copper, brass and bronze.

AICrN-coating

Max. application temperature: < 1100° C

Colour: Grey blue Hardness: 3200 HV0.05

AlCrN can be an alternative to the TiN-/TiCN-coating in the fluteless tapping of steels sector. The Ti free coating excels thanks to its excellent wear resitance and high oxidation hardness resistance.

		Tapping		Thread m	illing	Flute	less tappin	g
	Carbio	de	HSS	Carbio	de	Carbio	de	HSS
	conventional	MQL		conventional	MQL	conventional	MQL	
C-steels	-	-	TiCN	TiCN	TiCN	TiCN	TiCN	TiCN
Free-cutting steels	-	-	TiAIN	-	-	TiN	TiN	TiN
Mn-steels	-	-	TiN	-	-	-	-	-
	-	-	TiCN	TiCN	TiCN	TiCN	TiCN	TiCN
Steel, low-alloyed	-	-	TiAIN	-	-	TiN	TiN	TiN
	-	-	TiN	-	-	-	-	AlCrN
	-	-	TiCN	TiCN	TiCN	TiCN	TiCN	TiCN
Steel, alloyed	-	-	TiAIN	-	-	TiN	TiN	TiN
	-	-	TiN	-	-	-	-	AlCrN
	-	-	TiCN	TiAIN	TiAIN	-	-	-
Steel, hardened < 55 HRC	_	-	-	-	-	-	-	-
	-	-	_	-	-	-	-	-
	TiCN	-	-	TiAIN	TiAIN	-	-	-
Steel, hardened 55-65 HRC	-	-	-	-	-	-	-	-
	-	-	-	_	-	-	-	_
	-	-	Sirius ¹ /TiAlN ²	TiCN	TiCN	TiCN	TiCN	TiCN
Steel, stainless and	_	_	TiN	_	_	TiN	_	TiN
acid resistant	_	_	_	_	_	_	_	_
	TiAIN	TiAIN	TiAIN	TiCN	TiCN	TiCN	TiCN	TiCN
Cast iron	TiCN	-	TiCN	-	-	TiN	TiN	TiN
	-	_	TiN	_	_	-	-	-
	bright	bright	bright	bright	bright	Carbo	Carbo	Carbo
Aluminium wrought alloys	Carbo	Carbo	Carbo	- bright	-	- Carbo	-	-
Aluminum wrought alloys	- Carbo	-	- Carbo	_	<u>-</u>		_	_
	TiCN	TiCN	TiCN	TiCN	TiCN	TiCN	TiCN	TiCN
Aluminium cast alloys	-	-	-	bright	bright	Carbo	Carbo	Carbo
(< 12% silicon)		-		- bright	bright -	Carbo	Carbo	Carbo
	T:ON		T:ON			-	-	-
Aluminium cast alloys	TiCN	TiCN	TiCN	TiCN	TiCN	-	-	-
(≥ 12% silicon)	Cristall	-	-	Cristall	-	-	-	-
	-	-	- T:01	-	- T:0N	- T:0N	- T:0N	- T:0N
Nickel based alloys	-	-	TiCN	TiCN	TiCN	TiCN	TiCN	TiCN
(i.e. Inconel)	-	-	TiAIN	-	-	-	-	-
	-	-	-	- T:0N	- T:0N	- T:01	- T:0N	- T:01
Titanium / titanium alloys	-	-	TiCN	TiCN	TiCN	TiCN	TiCN	TiCN
-	-	-	TiAIN	-	-	-	-	-
Copper / bronze / brass	bright	bright	bright	bright	-	Carbo	Carbo	Carbo
	Carbo	Carbo	Carbo	-	-	-	-	-
	bright	-	bright	TiCN	TiCN	-	-	-
Cobalt chrome alloys	-	-	-	-	-	-	-	-
_	-	-	-	-	-	-	-	-
Precious metals	-	-	-	-	-	-	-	-
Ceramic	-	-	-	-	-	-	-	-
Plastics, non-reinforced	bright	-	bright	bright	bright	-	-	_
		Tichi	-					
Plastics, fibre-reinforced	TiCN	TiCN	-	TiCN	TiCN	-	-	-
	lind holes	-	-	-	-	-	-	-

¹... for through holes ²... for blind holes

Note:

The overview shows the general application recommendations for Guhring coatings. Prioritisation is from top to bottom.

Application problems with new taps

Problem	Possible causes	Solution
1. Thread surface not	cutting edge geometry not suitable for the application	apply "correct" tap for the material to be machined
according to requirements	cutting speed too high	reduce cutting speed optimise lubrication
	insufficient coolant (concentration and supply)	ensure suitable coolant and sufficient volume
	chip congestion	apply suitable tap type
	tapping size hole too small	observe tapping size hole diameter specifications to DIN 336 or respective standards. Observe table for fluteless taps
	with tough, hard materials loading on tool too much or pitch too steep	apply hand tap sets
	built-up edge	apply coated tap
	cold welding	improve coolant supply
2. Tool life	surface hardening of tappinge size hole	check drill (cutting edge) for wear
insufficient		heat or surface treatment following thread production
	reasons listed under: "thread surface not according to requirements"	reasons listed under: thread surface "not according to requirements"
	chip congestion	apply correct tap
3. Tool breakage during advance or return	tapping size hole too small	observe tapping size hole dia. acc. to DIN 336 or respective standards
	teeth of chamfer lead overloaded	longer chamfer lead (blind or through hole)
		increase no. of teeth of chamfer lead by increasing no. of flutes apply tap sets
	tap hits bottom of tapping size hole	check hole depth
	ap nic social of apping cize note	apply tension/compression tap chuck
1/4	lack of or incorrect chamfer of tapping size hole	correct chamfer angle of tapping size hole
	postional or angle error of tapping size hole	ensure correct tool clamping apply floating tap holder check core drill
	tool hardness not suitable for the application cutting edge geometry not suitable for the application	apply suitable tap for the individual application

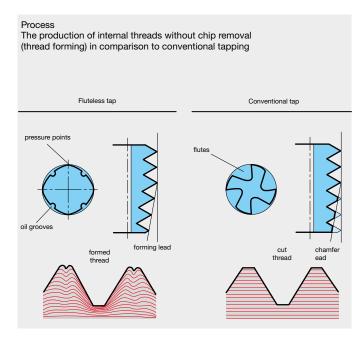
Errors and difficulties with reground taps

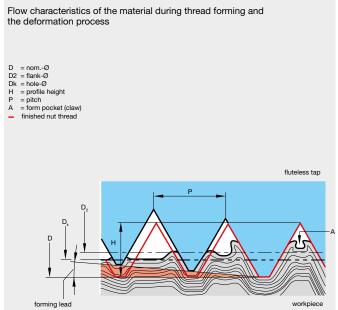
Problem	Possible causes	Solution
	_	
1. Thread produced is too large	cutting edge geometry (chamfer lead, rake-, chamfer-, spiral point angle) not retained	remove burrs observe technical specifications when regrinding observe regrinding instruction
2. Thread produced is too small	worn section has not been reground correctly tap too small due to no. of regrinds	regrind again or apply new tool observe max. regrinding limits max. regrinding limit reached apply new tap
3. Thread produced not according to requirements	burrs cutting edge geometry (chamfer lead, rake-, chamfer-,spiral point angle) not retained peak-to-valley height of the reground tap too large cold welding at the flanks	remove burrs observe technical specifications when regrinding observe regrinding instruction regrind again or apply new tool observe max. regrinding limits remove cold welding marks
4. Tool life insufficient	cutting edge geometry (chamfer lead, rake-, chamfer-, spiral point angle) not retained loss of tap hardness due to heat development during the regrinding process loss of coating	check quality of grinding wheel check coolant supply check quality of grinding wheel check coolant supply recoat check coating of the material to be machined

Thread production by pressure deformation

Fluteless taps are used for the forming of internal threads without chip removal. In contrast to conventional tapping where material is cut from the workpiece, thread forming is a pressure deformation process without chip removal for the production of internal threads. During the process the material is cold formed without interrupting the grain flow.

According to DIN 8583, thread forming is described as "pressing the thread into the workpiece with a tool possessing a spiral working area". The spiral threaded, polygonal portion of the fluteless tap is "screwed" into the pre-drilled workpiece with an appropriate constant feed rate equal to the thread pitch. Hereby the thread profile is pressed gradually via the forming lead into the material of the workpiece so to speak. Subsequently, the pressure in the deformation zone exceeds the compression limit, the workpiece becomes ductile and is deformed. The material yields radially, "flows" along the thread profile in the unoccupied base of the tool and forms the minor diameter of the nut thread. The flow process creates the process specific form pockets (claws).


The tapping size hole diameter is heavily dependent on the formability of the material, the workpiece geometry and the required effective depth of the thread. In comparison to conventional tapping, a larger diameter tapping size hole should be selected. With a larger diameter tapping size hole the load on the tool is reduced whilst increasing the tool life. Thanks to the uninterrupted grain flow, the loading capacity of the thread remains sufficient with a 50% effective thread depth.


The partially formed crests of the thread with decreasing effective thread depth are a typical characteristic of threads produced by the thread forming process. With the flanks of the thread fully formed, they have no influence on the tensile strength of the thread. If necessary, the required deformation level of the thread should be determinded by performing a test.

Lubrication is of significant importance. The lubrication prevents material from building up on the thread flanks and ensures that the necessary torque for the forming process is not too high. Therefore, under no circumstances should there ever be a break-down in lubrication! Preference should be given to lubricants such as cooling agents of oils containing graphite such as those used in rolling processes. Always follow the rule: "The better the lubrication the easier the thread forming process!"

It offers the following advantages:

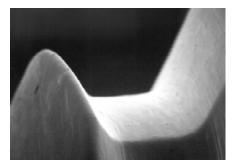
- no chip formation.
- one tool for the production of threads in through and blind holes.
- application in wide range of materials.
- · no cutting errors.
- pitch and angle of thread errors that can occur with thread cutting are eliminated.
- internal threads produced by thread forming possess a higher tensile strength particularly at the thread flanks thanks to the so-called "uninterrupted grain flow" and the cold forming process.
- the surface of the thread is improved.
- fluteless taps can be applied at higher speeds because the formability of many materials increases with the forming speed. This does not have a negative effect on the tool life.
- reduced danger of breakage through rigid design

"Profile"- Guhring's new fluteless tap generation Characteristics and advantages

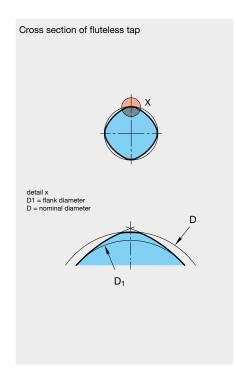
Conventional fluteless taps, produced by a grinding process only, show traces of microscopic, very fine grinding marks on the surface of the tool. This also applies to the threaded portion of the tool required to perform the thread forming operation.

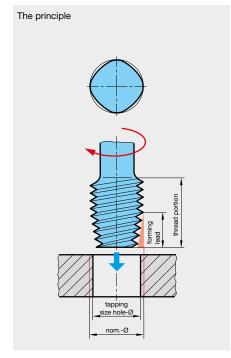
This surface topography (structure) has a negative effect on the friction between the tool and the material to be re-formed as well as on the herewith associated heat development, on the necessary torque and last but not least on the wear of the pressure points of the fluteless tap. In addition, the "grinding marks" encourage the build-up of the material to be re-formed in the thread flanks of the fluteless tap. This is also called cold welding.

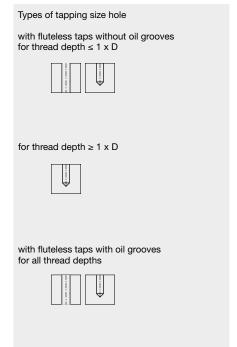
Thanks to a special process to improve the surface topography (structure), Guhring's new Profile fluteless taps no longer possess these "grinding marks". This has been confirmed in research and tool life studies in varying materials under production conditions.


For the user, a longer tool life and increased cutting speeds are the benefits of this special process. The tool life can be increased considerably depending on the material to be machined and the application condi-tions. A 100% increase in tool life is not unusual.

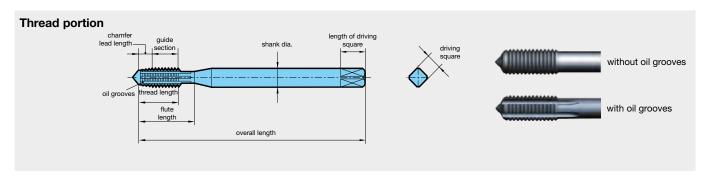
The improved surface topography is not only of benefit to tools with bright finish. Particularly coated tools also benefit from the new process. Outer contour and forming lead greatly determine the performance of the fluteless tap. Numerous tests have shown that fluteless taps with optimal pressure point geometry and quantity achieve increased tool life and dimensional accuracy.

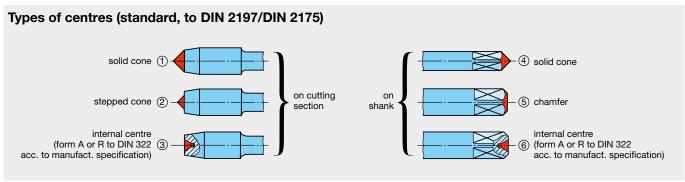

Further improvements in quality are achieved when the fluteless tap is produced completely in one setting and with one grinding wheel - set-up with a special roll. Pitch errors between the thread crests and former lead transition area do not occur as with the conventional grinding process.




Surface of a conventional fluteless tap

Optimised surface of a Guhring Profile fluteless tap





Definitions, angles, centres, thread tolerances and fits

	Centre on cutting section		
Thread dia. range mm	with chamfer forms A, C, D, E	with chamfer form B	Centre on shank
≤ 5.6	1)	1)	456
> 5.6 12.8	123	123	456
> 12.8	3	3	6

Thread tolerances and fits

Fits between internal and external threads are separated by a diagonal stroke, as for example 6H/6g (internal/external thread). The fit has to be selected in conjunction with the appropriate thread connection.

The tolerance zones of the tolerance classes fine, medium and coarse are allocated to three screw-in lengths short S), normal (N) and long (L). Generally, the following rules apply for selecting a tolerance class:

Fine tolerance zone (S):

For precision threads, when only a small variation in the fit is permitted.

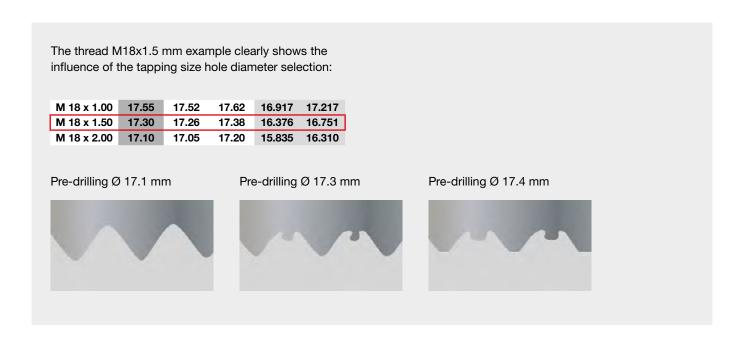
Screw-in lengths

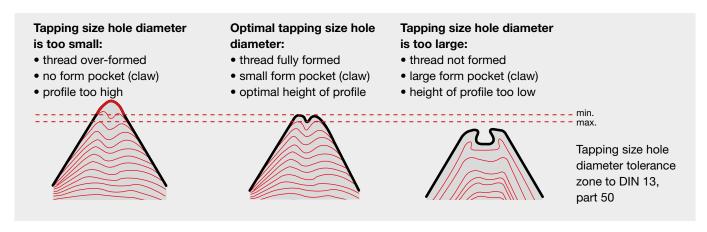
The quality of thread connection is also affected by the screwin length. The ISO tolerance system was, especially as regards the pitch diameter, divided into three groups, i.e. The following fit should be selected for normal screw-in length N: To ensure a tighter fit of thread connections, we recommend for short screw-in lengths a narrower fit.

Medium tolerance zone (N):

General application

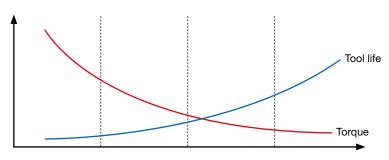
Coarse tolerance zone (L):


There are no special precision requirements and in cases where production difficulties may occur, e.g. thread production in hot-rolled rods, deep blind holes or plastic components.


S (Short) = short screw-in length
N (Normal) = normal screw-in length
L (Long) = long screw-in length

Tapping size hole diameter

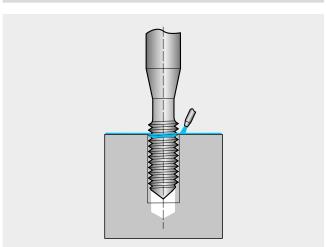
With fluteless tapping, the tapping size hole diameter influences the distinction of the formed thread. A too small tapping size hole diameter results in an over-forming of the thread which must definitely be prevented because this can lead to tool breakage. A too large tapping size hole is acceptable with certain tolerances because formed threads have a sufficient loading capacity from a 50% bearing depth.



Influence of the tapping size hole on tool life, torque and process reliability

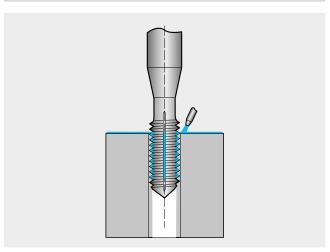
The optimisation of the pre-drilling diameter is especially worthwhile in mass production.

The larger it is, the longer the tool life and the less the required torque is. The graphic clearly shows the relationship

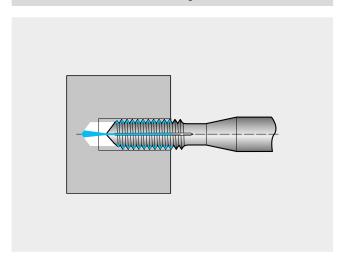


Lubrication for thread forming

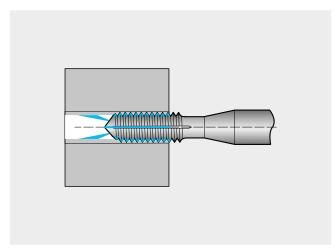
For tool design four different cases should be differentiated between


Vertical machining of a blind hole

Lubrication grooves and internal coolant delivery is not necessary; external coolant delivery is sufficient


(Axial coolant is recommended for very deep threads).

Vertical machining of a through hole (> 1,5xD_N)


Lubrication grooves are required; internal coolant delivery is not necessary. Via the lubrication grooves the externally delivered coolant can advance to the form edges (Radial coolant is recommended for very deep threads).

Horizontal machining of blind hole

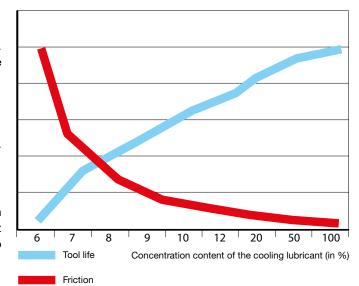
Lubrication grooves and internal coolant delivery is necessary. Axial coolant exit is sufficient.

Horizontal machining of through hole

Lubrication grooves are required. Internal coolant delivery with radial exit is recommended.

Cooling lubricants with fluteless taps

With fluteless taps the main task of the coolant is lubrication. The better the lubrication with the maximum concentration, the longer the tool life.


There are two different types of lubricant:

Oil based lubricants

These are mineral oils with the best lubricating characteristics. They reduce friction and achieve optimal life.

Soluble lubricants

These soluble lubricants are a concentrate thinned to an emulsion prior to the use with water. The concentration must not be below 6%. A content more than 12% is ideal in order to achieve a long life thanks to a good lubrication effect

Application problems with new fluteless taps

Problem	Possible causes	Solution
Thread produced is too small	Tapping size hole diameter too large	Select correct tapping size hole diameter according to table
2 Thread overformed	Tapping size hole diameter too small	Select correct tapping size hole diameter according to table
3 Thread surface not according to requirements	Cold welding on the tool Lubricant with too little oil content	Increase oil content in lubricant or apply neat oil Increase oil content in lubricant or apply neat oil
4 Tool life insufficient	Lubricant with too little oil content Tapping size hole diameter too small Cutting speed too high Lubricant soiled	Increase oil content in lubricant or apply neat oil Select correct tapping size hole diameter according to table Adjust cutting speed Check filtration
5 Tool breakage	Lubricant with too little oil content Tapping size hole diameter too small Incorrect tool clamping	Increase oil content in lubricant or apply neat oil Select correct tapping size hole diameter according to table Check tool clamping

What are the advantages of thread milling compared to tapping and fluteless tapping?

- Different materials can be machined with one tool (aluminium, steel, cast iron, stainless steel, titanium, Inconel, max. HRC 65 and much more)
- Various diameters and tolerances are possible with one tool (i.e. 6H+0.1, 7G, EG and much more).
- One tool for through and blind holes as well as right- and left-hand threads
- Thread depth possible up to the base of the hole (0.5xP).
- · No axial cross-cutting
- Saving tool locations (type TMC, type DTMC).

- Problem-free chips because short milling chips are produced.
- Reduced tooling costs with the same pitch and large threads (type TMU)
- Short cycle times thanks to high cutting speed and feed rate
- High process reliability even in the event of tool breakage as the thread milling cutter can be completely removed from the workpiece and the machine.
- High economic efficiency thanks to Guhring's re-grind and re-coating service.

The Guhring thread milling cutter types

TM SP - thread milling cutter w/o countersink step

- · Simple and cost-efficient tool for the milling of internal threads
- 2-3 thread sizes with the same pitch can be produced over the specified nominal dimension
- Application in materials ≤ 1000 N/mm²
- · Available with or without internal cooling

Thread types: M, MF, UNC, UNF, G, NPT, NPTF

TMCP SP – Thread milling cutter with 45° countersinking step

- · Countersinking and thread milling with only one tool
- · Very smooth running and low lateral forces
- Designed for the application of difficult-to-machine materials also available w/o countersinking step
- 2-3 thread sizes with the same pitch can be produced over the specified nominal dimension
- Only available with internal cooling

Thread types: M, MF,UNC, UNF,G, NPT, NPTF

TMU SP - universal milling cutter with collar recess

- Universal application possibilities
- For various thread sizes with the same pitch, i.e. thread M30x1.5 with milling cutter Ø 12xM1.5, Ø 16xM1.5 or Ø 20xM1.5
- Only available with internal cooling

Thread types: M, MF, G, UN, NPT, NPTF and external thread M, MF, G

DTMC SP – drill/thread milling cutter with 2 cutting edges and 45° chamfer

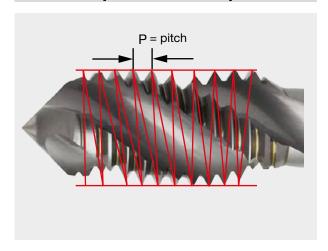
- Drilling, countersinking and thread milling with only one tool
- Resulting in reduced machining times and tool costs as well as reduced space requirements
- Application only in aluminium, cast materials, brass and plastics
- · Available with or without internal cooling

Thread types: M, MF, UNC, UNF

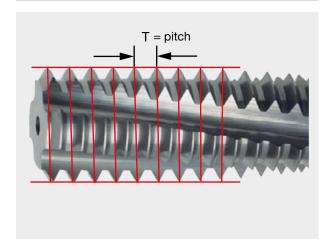
MTM 3 SP - micro-thread milling cutter (3-tooth type)

- · Thread size and pitch are predetermined
- Excellent characteristics with high-tensile materials such as titanium, stainless steel etc.
- Suitable for the machining of hardened steel 45HRC-65HRC
- Threads up to 3xD
- · Available with or without internal cooling

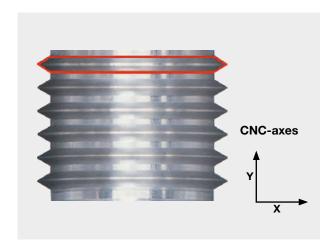
Thread types: M, MF, G, UNC, UNF, MJ, UNJC, UNJF


MTM 1 SP - micro-thread milling cutter (1-tooth type)

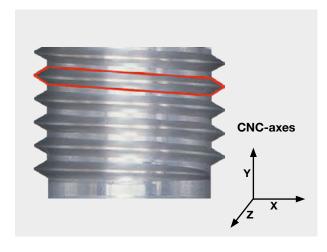
- Universal production of nominal thread diameters up to a maximum pitch
- Only available with internal cooling


Thread types: M, MF

Taps/fluteless taps


The red lines show the pitch angle of the thread that is ground into the tool. This means the pitch is cut into the workpiece by the tool.

Thread milling cutters



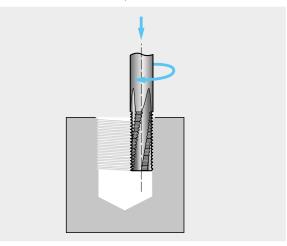
The red lines show that the tool does not possess a pitch angle. The pitch is produced by the Z-axis of a CNC machine.

Creation of the thread with thread milling

Thread profile without axial feed (Z-axis) of the machine. A groove profile is created without pitch. A functioning thread is not created

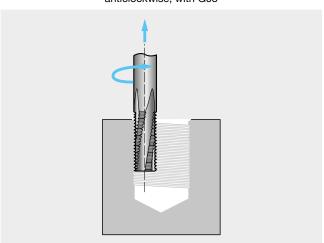
Through the additional programming of the Z-axis the necessary pitch is produced.

Note:


Due to diagonal milling in the pitch angle (Z-axis) the thread profile of the tool is transferred onto the component distorted

The more the milling cutter diameter (80% of nom. Ø) approaches the nominal thread diameter and the higher the thread pitch the more pronounced the profile distortion is.

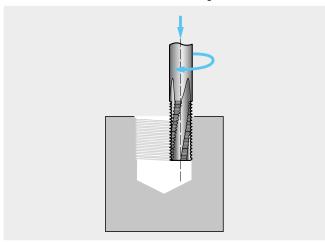
Conventional milling


clockwise, with G02

Conventional milling is preferentially applied for the machining of harder materials or to remedy taper threads.

Climb milling

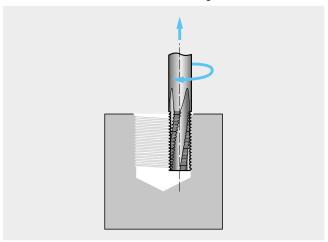
anticlockwise, with G03



Climb milling is applied with thread depths smaller than 1.5xD.
Advantage: A better surface finish is achieved.

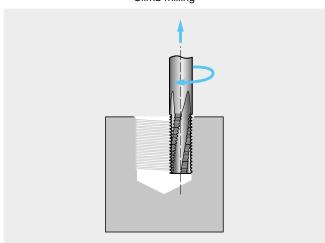
Thread production with one tool

Right-hand thread


Conventional milling

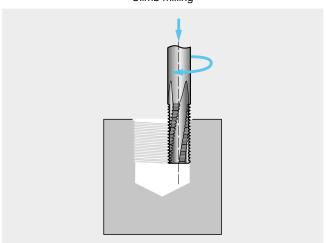
Tool rotates clockwise from top to bottom

Left-hand thread


Conventional milling

Tool rotates clockwise from bottom to top

Right-hand thread


Climb milling

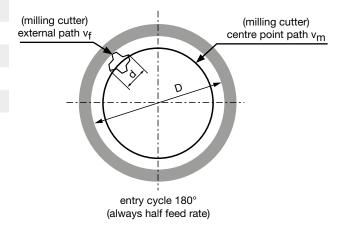
Tool rotates clockwise from bottom to top

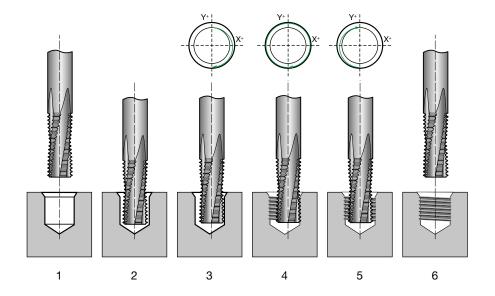
Left-hand thread

Climb milling

Tool rotates clockwise from top to bottom

Illustration	Modification	Effect
	Cooling slots on shank	Targeted cooling, without weakening the tool cross-section in the cutting edge area
	Radial coolant exits	Targeted cooling with through hole threads
	Threads removed	Reduced cutting forces but longer machining time because two cycles are required
	De-burring cutting edge	Removing the incomplete threads at the thread run-in without additional operating step.
	First thread profile lengthened at the face	Chamfering a tapping size hole
	Grinding collar	Enables axial distribution of cuts – useful for deep threads


Program specifications


Thread milling functions

G00 Rapid movement	G90 Absolute dimension
G01 Feed	G91 Incremental dimension
G02 Circular interpolation (clockwise)	M03 Spindle on (clockwise rotation)
G03 Circular interpolation (anti-clockwise)	M05 Spindle stop
G17 Layer selection x-y axis	M08 Coolant on
G18 Layer selection z-x axis	X Axis
G19 Layer selection y-z axis	Y Axis
G40 Cancel tool correction	Z Axis
G41 Tool path correction (left of contour)	I Thread pitch parallel to X-axis
G42 Tool path correction (right of contour)	J Thread pitch parallel to Y-axis
G43 Tool length compensation (call-up)	S Spindle speed
G49 Tool length compensation (deselect)	F Feed
G54 Work offset	

CNC internal thread milling

- 1. Moving to start position
- 2. Moving to thread depth in bore
- 3.180° descending loop to contour
- 4.360° full circular movement of thread milling cutter
- 5.180° exit loop to centre of bore
- 6. Rapid movement from bore to start position

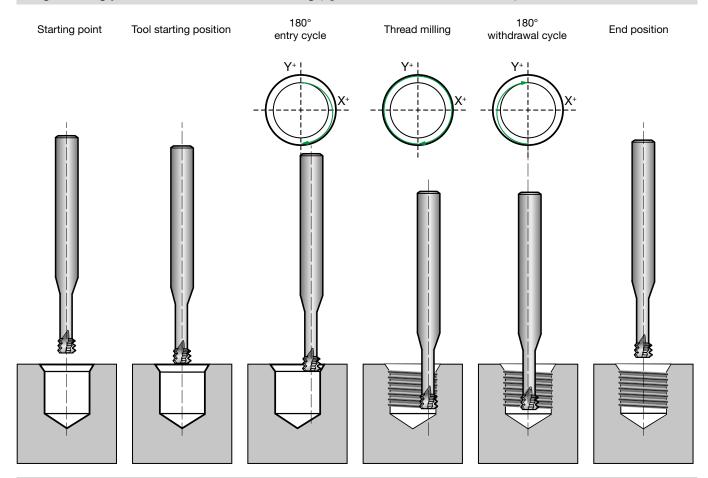
Formula of calculation

$$\begin{aligned} v_{c} &= \frac{d \cdot \pi \cdot n}{1000} \\ n &= \frac{v_{c} \cdot 1000}{d \cdot \pi} \\ v_{f} &= n \cdot z \cdot f_{z} \\ v_{m} &= \frac{v_{f} \cdot (D - d)}{D} \\ v_{b} &= n \cdot f_{b} \\ \end{aligned}$$

$$v_{c} = \text{cutting speed}$$

$$v_{r} &= \text{contour feed}$$

$$v_{m} &= \text{centre point path feed}$$

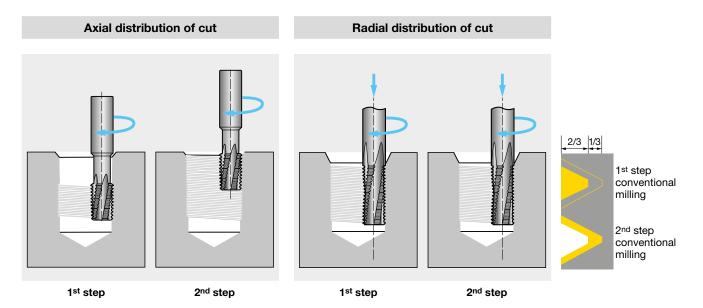

$$n &= \text{revolutions}$$

- = number of teeth

- f_z = feed per tooth
- = feed per drill per revolution*
- v_b = drill feed rate*
- $D = \emptyset$ nom. of thread [mm]
- d = milling cutter nom. Ø [mm]
- * for drill/thread milling

Programming process for micro-thread milling (right-hand thread in reverse rotation)

Possibilities to reduce radial forces


To reduce radial forces cut distribution can be undertaken:

Advantage:

- for larger thread depths
- counteracts taper threads
- for unstable clamping conditions

Disadvantage:

- increased tool wear
- longer production time

Selecting the correct clamping chuck

Correct tool clamping also plays a essential role with thread milling. Thread milling cutters should as a rule be clamped as short as possible. A compact and mechanical clamping force is preferable. The error in concentricity should not exceed 0.02 millimetres.

Power chucks

max. permissible error in concentricity: 0.003 mm

A power chuck excels thanks to extremely accurate concentricity. The high clamping forces and optimal smooth running are a perfect prerequisite for the production of threads in all materials including a high pitch.

Side lock holders

max. permissible error in concentricity: 0.002 mm

A side lock holder for HB and HE shanks is a robust, costefficient clamping chuck with a maximum clamping force. The clamping surface prevents the tool twisting or being pulled out during machining. Therefore, side lock holders are suitable for the production in all materials including a high pitch.

Shrink fit chucks

max. permissible error in concentricity: 0.005 mm

A shrink fit chuck creates a rigid connection with the shrink fitted tool. Incorrect shrink fitting or older shrink fit chucks can result in the pulling out of the tool. Tool breakage and possible loss of the component would be the consequence. Therefore, the shrink fit chuck is only suitable for a thread pitch < P=1.5 mm.

Hydraulic chucks

max. permissible error in concentricity: 0.005 mm

A hydraulic chuck, similar to the shrink fit chuck, has only limited suitability for thread milling. Especially with high radial forces this clamping chuck reaches its limits. Therefore, the hydraulic chuck is recommended for softer materials such as aluminium and a thread pitch < P=1.5 mm.

Collet holders

max. permissible error in concentricity: 0.01 mm

Collet chucks are very well suited for micro-thread milling because only axial stresses are created. The low clamping forces omly permit the milling of softer materials. Consequently, collet holders are not suitable for conventional thread milling.

Practical application of thread milling cutters

1.) Tool clamping:

good concentricity is important, therefore clamping as short and rigid as possible

2.) Enter tool data in machine memory

- 1.) Tool length from the front face, take drill/thread milling cutters (DTMC) rom point.
- 2.) Measure tool radius with tool pre-setting equipment. General rule: measured radius 0.022 x pitch provides the input value in machine memory.

3.) Input of CNC program in control

(preferably integrated as sub-program at corresponding positions)

- a.) Call-up of a self-controlling cycle (procedures should be known)
- b.) Integration of data file from our threadmill-software (DIN or Haidenhain).

4.) Trial run over workpiece

- a) Tool length dimension in memory extending by an approximate value dependent on contact length (i.e. 30 mm) or offset zero point.
- b) Run program in single set, visual check of travel path.
- c) Allow program to run in automatic mode.

Attention:

With controls where it is not definitely clear what milling path is assigned it it must be clarified if the feed is positioned on the external path vf or at the centre path vm. As a rule we specify the milling centre point path vm.

5.) Application in workpiece

Re-set the tool extension or the zero point. Then allow the program to run in the workpiece the feed regulation must be 100% selected. Should the thread not be true to gauge, the tool radius requires correction in the tool memory:

Example:

- thread too tight: Radius correction input
- thread too large: Radius correction + input

TM SP – Thread milling cutters without chamfer

Processing example type TM			
Guhring no.:	3737 TiCN	Cutting speed [v _c]:	80 m/min
Thread size:	M10x(1)	Feed per tooth:	0.05 mm
Thread depth:	20 mm / blind hole	Processing sequence:	conventional milling
Material:	St- 37	Processing time:	6.9 sec.
CNC program			
N10 M6 T1			
N20 G90 G54 G00 X0 Y0			
N30 Z2 S3203 M3 M8		position over workpiece	
N40 Z-18.70		position for thread depth	
N50 G91		incremental	
N60 G42 G01 X0 Y3.975 F50		radius compensation	
N70 G02 X0 Y-9.005 I0 J-4.503 Z-0.150		entry cycle 180°	
N80 G02 X0 Y0 I0 J5.030 Z-1.000 F101		thread pitch 360°	
N90 G02 X0 Y9.005 I0 J4.503 Z-0.150		withdrawal cycle 180°	
N100 G40 G01 X0 Y-3.975		radius compensation off	
N110 G90		switch to absolute	
N120 G00 Z2 M9		rapid movement to start position	
N130 M30			

144

TMC SP - Thread milling cutters with 45° chamfer

Processing	ovamnla	type	CMC
Processina	examble	type	

Guhring no.:	3528 TiCN	Cutting speed [v _c]:	100 m/min
Thread size:	M12x(1.5)	Feed per tooth:	0.075 mm
Thread depth:	18 mm / blind hole	Processing sequence:	conventional milling
Material:	42CrMo4	Processing time:	4.15 sec.

Thread size:	M12x(1.5)	Feed per tooth:	0.075 mm
Thread depth:	18 mm / blind hole	Processing sequence:	conventional milling
Material:	42CrMo4	Processing time:	4.15 sec.
CNC program			
N10 M6 T1			
N20 G90 G54 G00 X0 Y0			
N30 Z2 S1600 M3 M8		position over workpiece	
N40 Z-26.20		position for 45° countersinking	
N50 G01 Z-27.57 F85		chamfering 45°	
N60 G00 Z-16.05 S3199		position for thread depth	
N70 G91		incremental	
N80 G42 G01 X0 Y4.975 F85		radius compensation	
N90 G02 X0 Y-11.015 I0 J-5.508 Z-0.22	5	entry cycle 180°	
N100 G02 X0 Y0 I0 J6.040 Z-1.5 F169		thread pitch 360°	
N110 G02 X0 Y11.015 I0 J5.508 Z-0.225	5	withdrawal cycle 180°	
N120 G40 G01 X0 Y-4.975		radius compensation off	
N130 G90		switch to absolute	
N140 G00 Z2 M9		rapid movement to start position	
N150 M30			

TMU SP - Universal thread milling cutters

J						
3541 Ø 12xM1 TiCN	Cutting speed [v _c]:	60 m/min				
M28x1	Feed per tooth:	0.05 mm				
12 mm / blind hole	Processing sequence:	conventional milling				
VA [1.4301]	Processing time:	28.96 sec.				
	position over workpiece					
	position for thread depth					
	incremental					
	radius compensation					
50	entry cycle 180°					
4	thread pitch 360°					
0	withdrawal cycle 180°					
	radius compensation off					
	switch to absolute					
	rapid movement to start position					
	M28x1 12 mm / blind hole	3541 Ø 12xM1 TiCN M28x1 Feed per tooth: 12 mm / blind hole Processing sequence: VA [1.4301] Processing time: position over workpiece position for thread depth incremental radius compensation entry cycle 180° thread pitch 360° withdrawal cycle 180° radius compensation off switch to absolute				

DTMC SP – Drill thread milling cutters

N160 M30

Processing example type DTMC							
Guhring no.:	3779 bright	Cutting speed [v _c]:	230 m/min				
Thread size:	M8x(1,25)	Drill feed:	0.1 mm / rev.				
Thread depth:	15 mm / blind hole	Feed per tooth:	0.05 mm				
Material:	AlSi 10%	Processing sequence:	conventional milling				

Material:	AISI 10%	Processing sequence:	conventional milling				
		Processing time:	3.44 sec.				
CNC program							
N10 M6 T1							
N20 G90 G54 G00 X0 Y0							
N30 Z2 S11529 M3 M8		position over workpiece					
N40 G01 Z-1 F577		boring (improved centering)					
N50 G01 Z-19.86 F1153		drilling to tapping size hole deptl	h with 45° countersink				
N60 G00 Z2 S11529		rapid movement from hole to flus	rapid movement from hole to flush out chips				
N70 Z-13.38		position for thread depth					
N80 G91		incremental					
N90 G42 G01 X0 Y3.175 F12	2	radius compensation					
N100 G02 X0 Y-7.205 I0 J-3.6	303 Z-0.188	entry cycle 180°					
N110 G02 X0 Y0 I0 J4.030 Z-	1.250 F245	thread pitch 360°	thread pitch 360°				
N120 G02 X0 Y7.205 I0 J3.60	03 Z-0.188	withdrawal cycle 180°					
N130 G40 G01 X0 Y-3.175		radius compensation off					
N140 G90		switch to absolute					
N150 G00 Z2 M9		rapid movement to start position	1				

TMU SP - Universal thread milling cutters for external threads

Free CNC programming on request!

Programming example M14x1.5 - 6g (external thread)

Tool type: TMU D12x20xM1.5-A TiCN Z=4 (tool-Ø 11.95 mm)

(alternatively TMU D16x25xM1.5 A TiCN Z=5 can be applied)

Material: 38MnSiV5

Parameter: $v_c = 130 \text{ m/min}, f_z = 0.06 \text{ (conventional milling) } v_f = 831 \text{ mm/min}, v_m = 1548 \text{ mm/min}$

N10 M6 T1

N20 G90 G54 G00 X0 Y0

N30 Z2 S3463 M3 M8 travel centrally over bolt

N40 G91 incremental

N50 X7.033 Y11.99 starting position lateral to bolt N60 G01 Z-14.5 travel to starting depth N70 G42 G01 X0 Y-5.975 radius compensation N80 G01 X-7.033 Y0.000 F774 linear approach path N90 G03 X0.000 Y0.000 Z1.5 I0 J-6.015 F1548 thread pitch 360° N100 G01 X-7.033 Y0.000 linear exit path N110 G40 G01 X0.000 Y5.975 radius compensation off N120 G90 switch to absolute

end position over bolt

N140 M30

N130 G80 G00 Z2 M9

Type TM SP - für NPT threads (conical, taper 1:16)

Free CNC programming on request!

Programming example NPT ¼-18: (conical, taper 1:16)

Tool type: TM D 9.95x19,05xNPT18 IK (4-fluted) Tool Ø: d1 = 9.95 mm (measured on the first tooth)

Tool length: Measured at the face

Tapping size Ø: Ø 11.10 mm cylindrical (conical pre-machining preferred D1 = 11.36 mm / d1 = 11.10 mm)

Material: 16 Mn Cr 5

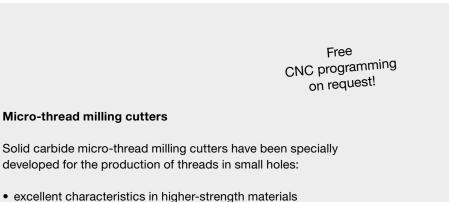
Parameter: $v_c = 70$ m/min, $f_z = 0.05$ (conventional milling) $v_f = 447$ mm/min, $v_m = 102$ mm/min

N10 M6 T1

N150 G53 G00 Z2.000

N160 M30

N20 G90 G54 G00 X0.000 Y0.000 N30 Z2.000 S2239 M3 D1 position over workpiece N40 G00 Z-10.016 drive tool into bore N50 G91 incremental N60 G42 G01 X0.000 Y4.975 F1000 radius compensation N70 G02 X0.000 Y-11.432 I0.000 J-5.716 Z-0.212 F51 entry cycle 180° N80 G02 X-6.457 Y6.457 I0.000 J6.457 Z-0.353 F102 1/4 thread, without correction N90 G02 X6.445 Y6.445 I6.445 J0.000 Z-0.353 1/4 thread, with correction N100 G02 X6.434 Y-6.434 I0.000 J-6.434 Z-0.353 1/4 thread, with correction N110 G02 X-6.423 Y-6.423 I-6.423 J0.000 Z-0.353 1/4 thread, with correction N120 G02 X0.000 Y11.387 I0.000 J5.694 Z-0.212 withdrawal cycle 180° N130 G40 G01 X0.000 Y-4.975 F1000 radius compensation off N140 G90 switch to absolute


GÜHRING 149

rapid movement to start position

MTM 3 SP Micro-thread milling cutters

- blind holes and through holes up to 3xDminimum cutting force
- very good thread quality
- short machining times
- also suitable for softer materials (e.g. aluminium or plastics)

(i.e. titanium alloys, stainless steels,)

Programming example: M3x(0.5) MTM 3 SP

Material: TiAl6V4

Thread: M3, depth 7.0 mm / blind hole

Tool: MTM 3 SP M3x(0.5) tool Ø 2.4 mm Z=3

Parameter: $v_c = 40 \text{ m/min}, f_z = 0.025 \text{ (conventional milling) } v_f = 398 \text{ mm/min}, v_m = 84 \text{ mm/min}$

N10 M6 T1

N20 G90 G54 G00 X0 Y0

N30 Z2 S5305 M3 M8

N40 Z0.1 N50 G91

N60 G42 G01 X0 Y1.200 F42

N70 G02 X0 Y-2.720 I0 J-1.360 Z-0.075 N80 G02 X0 Y0 I0 J1.520 Z-0.500 F84

Number of repeats of set N80 =15

N90 G02 X0 Y2.720 I0 J1.360 Z-0.075

N100 G40 G01 X0 Y-1.200

N110 G90

N120 G00 Z2 M9

N130 M30

Type

TM

TMC

TMU

DTMC

Type

MTM 3 MTM 1 MTMH 3

Application recommendations thread milling cutters

																	75		LH.
		Cutting				Fee	d mm	per to	ooth fz	for Ø	(up-c	ut mill	ing)				10		
ISO	SO Material group speed Milling part diameter																		
130	Material group	V _C	Ø2	Ø3	Ø4	Ø5	Ø6	Ø7	Ø8	Ø9	Ø10	Ø12	Ø14	Ø16	Ø18	Ø20			
		(m/min)	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm			W.
	Common structural steels																		
	Free-cutting steels	110	0.02	0.02	0.025	ก กร	0 035	0.045	0.05	0.055	0.06	0.06	0.065	0.065	0.07	0.08	++	++	++
	Unalloyed case hardened steels	110	0.02	0.02	0.023	0.03	0.033	0.043	0.00	0.033	0.00	0.00	0.003	0.003	0.07	0.00	TT	TT	
Р	Unalloyed heat-treatable steels																		
	Alloyed case hardened steels																		
	Alloyed heat-treatable steels	90	0.015	0.015	0.02	0.025	0.03	0.035	0.04	0.045	0.05	0.05	0.05	0.055	0.06	0.07	+	++	++
	Alloyed tool steels																		
	Stainless and acid-resit. steel																		
м	Steels, sulfured	60	0.01	0.01	0.015	0.02	0.025	0.03	0.03	0.035	0.04	0.045	0.05	0.05	0.055	0.06	+	++	++
	austenitic	00	0.01	0.01	0.010	0.02	0.023	0.00	0.00	0.000	0.04	0.043	0.00	0.00	0.000	0.00	•	•••	• •
	martensitic																		
к	Grey cast iron, cast iron	120	0.02	0.02	0.025	0.03	0 035	0.045	0.05	0.055	0.06	0.06	0.065	0.07	0.08	0.1	++	++	++
.,	Spher. graph. iron mall. cast iron	120	0.02	0.02	0.020	0.00	0.000	0.045	0.00	0.000	0.00	0.00	0.005	0.07	0.00	0.1	• • •	• • •	• •
	Non-ferrous metals:																		
N	Aluminium and other	250	0.03	0.035	0.04	0.045	0.05	0.055	0.06	0.065	0.07	0.08	0.085	0.09	0.1	0.12	++	++	++
.,	non-ferrous met., copper alloys																		
	Plastics	350	0.03		0.045			0.055				0.085		0.1	0.12	0.15	++	++	++
S	Special alloys and Titanium	35	0.01		0.015		0.025			0.035		0.045		0.05	0.055	0.06	+	++	++
Н	Hardened steel [max. 55 HRC]	25	-	0.005	0.005	0.01	0.012	0.014	0.018	0.02	0.02	0.022	0.025	0.03	0.035	0.04	+	++	+

Note: In hardened steels up to max. 55HRC diameter must be programmed in 3 passes!

Application recommendations drill thread milling cutters 2xD, 2,5xD

100	Makadial average	Cutting		10				Mil	ling par	t diame				40		40	n
ISO	Material group	speed	M		M		M		M M		M M		M.			12	
		V _C	fb	fz	fb	tz	fb ".	fz	fb	fz	fb ".	fz	fb	fz	fb ".	tz	
		(m/min)	mm/U	mm	mm/U	mm	mm/U	mm	mm/U	mm	mm/U	mm	mm/U	mm	mm/U	mm	- William
к	Grey cast iron, cast iron	100	0.05	0.01	0.06	0.02	0.07	0.025	0.08	0.035	0.1	0.04	0.12	0.055	0.14	0.065	+
, ,	Spher. graph. iron mall. cast iron	100	0.05	0.01	0.00	0.02	0.07	0.023	0.00	0.000	0.1	0.04	0.12	0.000	0.14	0.003	•
	Non-ferrous metals:																
	Aluminium and other	230	0.06	0.015	0.07	0.025	0.08	0.03	0.1	0.04	0.12	0.05	0.15	0.07	0.18	0.08	++
N	non-ferrous met., copper alloys																
	Plastics	300	0.07	0.02	0.08	0.03	0.09	0.04	0.12	0.05	0.13	0.06	0.18	0.09	0.2	0.12	++

Application recommendations micro-thread milling cutters

		Cutting			F	eed m	ım / pe	er toot	h fz foi	· Ø (up	o-cut r	nilling	1)					
ISO	Material group	speed						/lilling	part di	amete	er							- 1
130	Material group	Vc	Ø1	Ø1.5	Ø2	Ø3	Ø4	Ø5	Ø6	Ø7	Ø8	Ø9	Ø10	Ø12	Ø14			- 11
		(m/min)	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	W	U U	W
	Common structural steels																	
	Free-cutting steels	70 - 120	0.04	0.04	0.05	0.05	0.06	0.06	0.07	0.07	0.08	0.09	0.09	0.1	0.12	++	++	_
	Unalloyed case hardened steels	70-120	0.04	0.04	0.03	0.03	0.00	0.00	0.07	0.07	0.00	0.03	0.03	0.1	0.12			
Р	Unalloyed heat-treatable steels																	
	Alloyed case hardened steels																	
	Alloyed heat-treatable steels	60-90	0.03	0.03	0.04	0.04	0.05	0.05	0.06	0.06	0.07	0.07	0.08	0.09	0.1	++	++	-
	Alloyed tool steels																	
	Stainless and acid-resit. steel																	
м	Steels, sulfured	40-80	0.02	0.02	0.02	0.03	0.03	0.04	0.05	0.05	0.05	0.06	0.06	0.06	0.07	++	++	-
IVI	austenitic																	
	martensitic	40-80	0.02	0.03	0.03	0.04	0.04	0.05	0.05	0.05	0.06	0.07	0.07	0.08	0.09	++	++	-
к	Grey cast iron, cast iron	60-80	0.04	0.04	0.05	0.05	0.06	0.06	0.07	0.07	0.08	0.09	0.09	0.1	0.12	++	++	_
K	Spher. graph. iron mall. cast iron	00-00	0.04	0.04	0.03	0.05	0.00	0.00	0.07	0.07	0.08	0.09	0.09	0.1	0.12	TT		_
	Non-ferrous metals:																	
N	Aluminium and other	80 - 150	0.04	0.05	0.05	0.06	0.06	0.07	0.07	0.08	0.09	0.1	0.11	0.12	0.14	++	++	-
14	non-ferrous met., copper alloys																	
	Plastics	60 - 200	0.05	0.05	0.06	0.07	0.07	0.08	0.09	0.09	0.1	0.11	0.12	0.13	0.15	++	++	-
S	Special alloys and Titanium	20-40	0.02	0.02	0.02	0.03	0.03	0.04	0.05	0.05	0.05	0.06	0.06	0.06	0.07	++	++	+
Н	Hardened steel (max. 65 HRC)	40-50	0.01	0.02	0.02	0.03	0.03	0.035	0.035	0.04	0.045	0.045	0.05	0.055	0.06	_	_	++

Please note:

The cutting values specified in the respective columns are guide values, they have to be adapted according to application conditions (material, lubrication, tool clamping, machine etc.)

Depending on the machining task the optimal cutting values can differ from those in the table by up to +- 30% !

++ optimally suited + suited

GuhroThreadmill

(CNC-programming made easy) Guhring's Threadmill software considerably simplifies CNC programming. With the assistance of a clear input mask, the user enters all the necessary data such as, for example, type of thread milling cutter, thread type,diameter, machine parameters etc.and immediately obtains the appropriate CNC program based on the data.

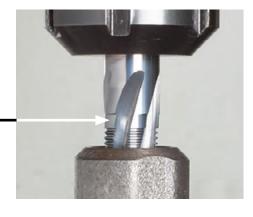
The sotware is free of cost on request, for DIN or Heidenhain control.

Application problems with new thread milling cutters

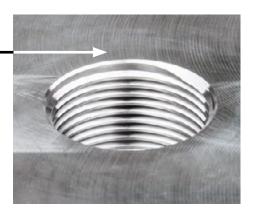
Problem	Possible causes	Solution
Thread produced is too large or too small	Incorrect radius in CNC program and therefore milling of incorrect circle	Correct milling radius until thread is dimensionally correct
2. Thread not cylindrical	Feed rate too high	Reduce feed rate
	Climb milling path with long threads	Modify milling direction to opposite direction
3. Thread surface not according to	Cutting speed too high	Adjust cutting speed
requirements, chatter marks	Insufficient tool or workpiece clamping	Check tool and workpiece clamping
4. Tool breakage	CNC program error	Check CNC program
	Cutting rates too high	Adjust cutting rates
5. Tool life insufficient	Cutting rates too high	Adjust cutting rates
	Tool applied uncoated	Apply coated tool
	Insufficient lubrication and chip evacuation	Improve lubrication, coolant delivery via the spindle
6. Tool breakage with drill/milling cutter	Chip problems when drilling	Apply tool with IC
	Feed rates too high when drilling	Incorporate pecking cycles

Burr-free thread machining at the thread intake - no problem for Guhring's thread milling cutters

Problem:


Burr-formation at the thread entry

Solution:


Special tool

with relief-ground de-burring edge

Result:

When thread milling to the relevant plunging depth the incomplete, burr afflicted thread entry is milled

Our technical know-how is at your disposal to develop special solutions at any time.

GUHRING 153

Special thread milling cutters

You cannot find a suitable tool in our diverse thread milling cutter range?

Then we are more than happy to provide a tool optimally adapted to your machining task as a special solution.

Please contact us!

Re-grinding and re-coating

Guhring provides a life-long re-grind and re-coating service for thread milling cutters. By professionally re-grinding and re-coating with original geometries and original coatings Guhring re-produces the 100 per cent tool efficiency.

Re-grind service

In our service centres, tools are re-ground on the front rake face according to the degree of wear.

According to width of wear marks the re-grind service is possible two or three times (from milling part diameter d1 > 5.0 mm).

In order to re-define the milling portion diameter, the number of regrinds is indicated by a notch on the end of the shank. This means every notch is assigned to a diameter and re-etched.

Re-coating

If a thread mill was enhanced with a coating, the tool is re-coated following the re-grind. This way, not only the wear-and corrosion-protection as well as the glide characteristics are re-produced but also the tool life prolonged.

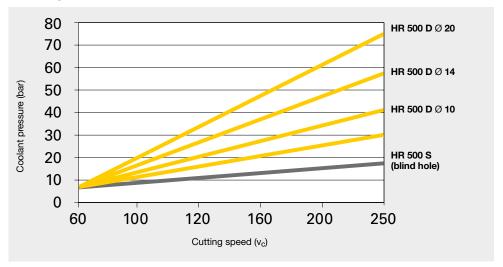
GUHRING 155

Reaming, countersinking and deburring tools

ᅟ	$^{\circ}$	\sim	\sim

<u>175</u>

Additional Information


176 General Information

<u>159</u>	Troubleshooting
<u>160</u>	The most common tolerance zones in µm
<u>163</u>	Manufacturing tolerances
<u>166</u>	Basic ISO tolerances
<u>167</u>	Manufacturing tolerances to DIN 1420
<u>168</u>	Designation to DIN 1420
<u>169</u>	Surface quality
<u>170</u>	Achievable surface quality for reaming operations
<u>171</u>	Hardness comparison
<u>172</u>	Selection and application
<u>174</u>	Special recommendations for reaming with machine reamers

158 Recommendations for the application of reamers HR 500

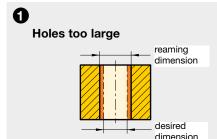
Coolant pressure

Coolant pressure - cutting speed valid for standard dimensions. Preconditions: sufficient capacity of coolant pump

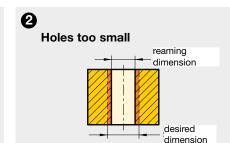
Adapted cutting speed, an appropriate feed rate and good cooling and lubricating agents should always be a top priority for reaming operations. A further point to be considered is that the reamer always follows the direction of the pre-drilled hole. An exception is the machine bottoming reamer or a very small reamer. Consequently reamers do not correct alignment errors of pre-drilled holes. Errors between the spindle axis and the axis of a pre-drilled hole can be adjusted with the aid of floating holders. The following fault finding chart will be found useful in tracing the cause of some common reaming problems.

Wording:

Desired dim. Required finish dimension


of bore hole, defined as max./min. dimension of

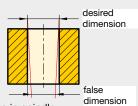
tolerance zone


Reaming dim. the finish dimension

reached in fact
The reached bore hole

after reaming

- Tool diameter too large
- · Cutting speed too high
- Concentricity error of machine spindle
- Bevel lead of tool too short/uneven
- Cutting edge build up due to wrong cutting speeds oder schlechte Schmierung
- Lubricating agent unsuitable, holes too large due to lubrication

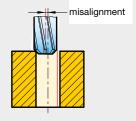


- · Reamer blunt. Does not cut, scrapes
- Cutting speed too low
- Component is thin-walled, springs back
- Insufficient stock removal allowance, tool seizes in hole
- Hole is not round due to distortion

..Bore hole"

Conical hole malformation

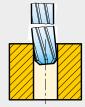
- Tool knocks in spindle
- Bevel lead incorrect
- Axis shifting between tool and predrilled hole. Application of floating holders
- · Pre-machining inaccurate


Unsatisfactory surface finish

- · Cutting speed too low
- No/insufficient lubrication. Cutting edge build-up.
- Tool damaged, i. e. broken cutting edge
- Material has a tendancy to cause build up on cutting edges.
- Concentricity bevel lead incorrect
- · Chip evacuation restricted

Misalignment of hole

- Pre-drilled hole misaligned
- Concentricity bevel lead incorrect
- Apply floating holder if necessary
- If necessary pilot drill to correct predrilled position


Hole has chatter marks

- Feed too low
- Cutting edge build-up
- · Grease content in coolant too low
- Circular lands too small
- · Stock removal allowance insufficient
- Tool incorrectly clamped in tool holder
- Machine spindle not concentric

Reamer seizes and breaks

- Position to pilot hole incorrect
- · Back taper incorrect
- Circular lands too wide
- Pre-drilled hole is too small
- Bevel lead blunt/ground unevenly
- Feed rate too high
- Chip congestion increase feed rate to produce shorter chips

Feed scoring marks in hole

- Cutting speed too low
- Worn cutting edges
- Crumbling on cutting edges
- Build up on cutting edges
- · Position to pilot hole incorrect
- Insufficient lubrication

Nominal o		Δ.	١		E	3			C	;	
over	to	9	11	8	9	10	11	8	9	10	11
		+295	+330	+154	+165	+180	+200	+74	+85	+100	+120
0	3	+270	+270	+140	+140	+140	+140	+60	+60	+60	+60
2	6	+300	+345	+158	+170	+188	+215	+88	+100	+118	+145
3	6	+270	+270	+140	+140	+140	+140	+70	+70	+70	+70
6	10	+316	+370	+172	+186	+208	+240	+102	+116	+138	+170
О	10	+280	+280	+150	+150	+150	+150	+80	+80	+80	+80
10	18	+333	+400	+177	+193	+220	+260	+122	+138	+165	+205
10	10	+290	+290	+150	+150	+150	+150	+95	+95	+95	+95
18	30	+352	+430	+193	+212	+244	+290	+143	+162	+194	+240
10	30	+300	+300	+160	+160	+160	+160	+110	+110	+110	+110
30	40	+372	+470	+209	+232	+270	+330	+159	+182	+220	+280
30	40	+310	+310	+170	+170	+170	+170	+120	+120	+120	+120
40	50	+382	+480	+219	+242	+280	+340	+169	+192	+230	+290
40	30	+320	+320	+180	+180	+180	+180	+130	+130	+130	+130
50	65	+414	+530	+236	+264	+310	+380	+186	+214	+260	+330
30	03	+340	+340	+190	+190	+190	+190	+140	+140	+140	+140
65	80	+434	+550	+246	+274	+320	+390	+196	+224	+270	+340
03	00	+360	+360	+200	+200	+200	+200	+150	+150	+150	+150
80	100	+467	+600	+274	+307	+360	+440	+224	+257	+310	+390
00	100	+380	+380	+220	+220	+220	+220	+170	+170	+170	+170
100	120	+497	+630	+294	+327	+380	+460	+234	+267	+320	+400
100	120	+410	+410	+240	+240	+240	+240	+180	+180	+180	+180

Nominal o				D	·	·		E			ı	F	·
over	to	8	9	10	11	12	7	8	9	6	7	8	9
0	3	+34	+45	+60	+80	+120	+24	+28	+39	+12	16	+20	+31
U	3	+20	+20	+20	+20	+20	+14	+14	+14	+6	+6	+6	+6
3	6	+48	+60	+78	+105	+150	+32	+38	+50	+18	+22	+28	+40
3	О	+30	+30	+30	+30	+30	+20	+20	+20	+10	+10	+10	+10
6	10	+62	+76	+98	+130	+190	+40	+47	+61	+22	+28	+35	+49
O	10	+40	+40	+40	+40	+40	+25	+25	+25	+13	+13	+13	+13
10	18	+77	+93	+120	+160	+230	+50	+59	+75	+27	+34	+43	+59
10	10	+50	+50	+50	+50	+50	+32	+32	+32	+16	+16	+16	+16
18	30	+98	+117	+149	+195	+275	+61	+73	+92	+33	+41	+53	+72
10	30	+65	+65	+65	+65	+65	+40	+40	+40	+20	+20	+20	+20
30	50	+119	+142	+180	+240		+75	+89	+112	+41	+50	+64	+87
30	30	+80	+80	+80	+80		+50	+50	+50	+25	+25	+25	+25
50	80	+146	+174	+220	+290		+90	+106	+134	+49	+60	+76	+104
50	00	+100	+100	+100	+100		+60	+60	+60	+30	+30	+30	+30
80	120	+174	+207	+260	+340		+107	+126	+159	+58	+71	+90	+123
60	120	+120	+120	+120	+120		+72	+72	+72	+36	+36	+36	+36
120	180							+148					
120	100							+85					
100	250							+172					
180	250							+100					

Nominal in n			G				Н			·		J	
over	to	6	7	6	7	8	9	10	11	12	6	7	8
	0	+8	+12	+6	+10	+14	+25	+40	+60	+100	+2	+4	+6
0	3	+2	+2	0	0	0	0	0	0	0	-4	-6	-8
3	6	+12	+16	+8	+12	+18	+30	+48	+75	+120	+5	+6	+10
3	O	+4	+4	0	0	0	0	0	0	0	-3	-6	-8
6	10	+14	+20	+9	+15	+22	+36	+58	+90	+150	+5	+8	+12
O	10	+5	+5	0	0	0	0	0	0	0	-4	-7	-10
10	18	+17	+24	+11	+18	+27	+43	+70	+110	+180	+6	+10	+15
10	10	+6	+6	0	0	0	0	0	0	0	-5	-8	-12
18	30	+20	+28	+13	+21	+33	+52	+84	+130	+210	+8	+12	+20
10	30	+7	+7	0	0	0	0	0	0	0	-5	-9	-13
30	50	+25	+34	+16	+25	+39	+62	+100	+160	+250	+10	+14	+24
30	30	+9	+9	0	0	0	0	0	0	0	-6	-11	-15
50	80	+29	+40	+19	+30	+46	+74	+120	+190	+300	+13	+18	+28
30	80	+10	+10	0	0	0	0	0	0	0	-6	-12	-18
80	120	+34	+47	+22	+35	+54	+87	+140	+220	+350	+16	+22	+34
00	120	+12	+12	0	0	0	0	0	0	0	-6	-13	-20
120	180		+54	+25	+40	+63	+100	+160	+250		+18	+26	+41
120	100		+14	0	0	0	0	0	0		-7	-14	-22
180	250		+61	+29	+46	+72	+115	+185	+290		+22	+30	+47
100	230		+15	0	0	0	0	0	0		-7	-16	-25

Nominal			J	S			K			М	
in n over	to	6	7	8	9	6	7	8	6	7	8
0	0	+3	+5	+7	+12,5	0	0	0	-2	-2	-4
0	3	-3	-5	-7	-12.5	-6	-10	-14	-8	-12	-18
3	6	+4	+6	+9	+15	+2	+3	+5	-1	0	+2
3	0	-4	-6	-9	-15	-6	-9	-13	-9	-12	-16
6	10	+4.5	+7.5	+11	+18	+2	+5	+6	-3	0	+1
O	10	-4.5	-7.5	-11	-18	-7	-10	-16	-12	-215	-21
10	18	+5.5	+9	+13.5	+21.5	+2	+6	+8	-4	0	+2
10	10	-5.5	-9	-13.5	-21.5	-9	-12	-19	-15	-18	-25
18	30	+6.5	+10.5	+16.5	+26	+2	+6	+10	-4	0	+4
10	30	-6.5	-10.5	-16.5	-26	-11	-15	-23	-17	-21	-29
30	50	+8	+12.5	+19.5	+31	+3	+7	+12	-4	0	+5
30	30	-8	-12.5	-19.5	-31	-13	-18	-27	-20	-25	-34
50	80	+9.5	+15	+23	+37	+4	+9	+14	-5	0	+5
30	00	-9.5	-15	-23	-37	-15	-21	-32	-24	-30	-41
80	120	+11	+17.5	+27	+43.5	+4	+10	+16	-6	0	+6
00	120	-11	-17.5	-27	-43.5	-18	-25	-38	-28	-35	-48
120	180					+4	+12				
120	100					-21	-28				
180	250					+5	+13				
100	230					-24	-33				

Nominal o				ı	N				Р			R
over	to	6	7	8	9	10	11	6	7	9	6	7
0	3	-4	-4	-4	-4	-4	-4	-6	-6	-6	-10	-10
0	3	-10	-14	-8	-29	-44	-64	-12	-16	-31	-16	-20
3	6	-5	-4	-2	0	0	0	-9	-8	-12	-12	-11
3	0	-13	-16	-20	-30	-48	-75	-17	-20	-42	-20	-23
6	10	-7	-4	-3	0	0	0	-12	-9	-15	-16	-13
0	10	-16	-19	-25	-36	-58	-90	-21	-24	-51	-25	-28
10	18	-9	-5	-3	0	0	0	-15	-11	-18	-20	-16
10	10	-20	-23	-30	-43	-70	-110	-26	-29	-61	-31	-34
18	30	-11	-7	-3	0	0	0	-18	-14	-22	-24	-20
10	30	-24	-28	-36	-52	-84	-130	-31	-35	-74	-37	-41
30	50	-12	-8	-3	0	0	0	-21	-17	-26	-29	-25
30	50	-28	-33	-42	-62	-100	-160	-37	-42	-88	-45	-50
50	65	-14	-9	-4	0	0	0	-26	-21	-32	-35	-30
30	00	-33	-39	-50	-74	-120	-190	-45	-51	-106	-54	-60
65	80	-14	-9	-4	0	0	0	-26	-21	-32	-37	-32
65	80	-33	-39	-50	-74	-120	-190	-45	-51	-106	-56	-62
80	100	-16	-10	-4	0	0	0	-30	-24	-37	-44	-38
ου	100	-38	-45	-58	-87	-140	-220	-52	-59	-124	-66	-73
100	120	-16	-10	-4	0	0	0	-30	-24		-47	-41
100	120	-38	-45	-58	-87	-140	-220	-52	-59		-69	-76

Nominal in r		;	S	Т		U		2	x		Z
over	to	6	7	6	6	7	10	10	11	10	11
	3	-14	-14	-18	-18	-18	-18	-20	-20	-26	-26
0	3	-20	-24	-24	-24	-28	-58	-60	-80	-66	-86
3	6	-16	-15	-20	-20	-19	-23	-28	-28	-35	-35
3	O	-24	-27	-28	-28	-31	-71	-76	-103	-83	-110
6	10	-20	-17	-25	-25	-22	-28	-34	-34	-42	-42
0	10	-29	-32	-34	-34	-37	-86	-92	-124	-100	-132
10	14	-25	-21	-30	-30	-26	-33	-40	-40	-50	-50
10	14	-36	-39	-41	-41	-44	-103	-110	-150	-120	-160
4.4	10	-25	-21	-30	-30	-26	-33	-45	-45	-60	-60
14	18	-36	-39	-41	-41	-44	-103	-115	-155	-130	-170
10	0.4	-31	-27	-37	-37	-33	-41	-54	-54	-73	-73
18	24	-44	-48	-50	-50	-54	-125	-138	-184	-157	-203
24	30	-31	-27	-37	-44	-40	-48	-64	-64	-88	-88
24	30	-44	-48	-50	-57	-61	-132	-148	-194	-172	-218
30	40	-38	-34	-43	-55	-51	-60	-80	-80	-112	-112
30	40	-54	-59	-59	-71	-76	-160	-180	-240	-212	-272
40	50	-38	-34	-49	-65	-61	-70	-97	-97	-136	-136
40	50	-54	-59	-65	-81	-86	-170	-197	-257	-236	-296
50	65	-47	-42	-60	-81	-76	-87	-122	-122	-172	-172
30	03	-66	-72	-79	-100	-106	-207	-242	-312	-292	-362
65	80	-53	-48	-69	-96	-91	-102	-146	-146	-210	-210
03	80	-72	-78	-88	-115	-121	-222	-266	-336	-330	-400
80	100	-64	-58	-84	-117	-111	-124	-178	-178	-258	-258
ου	100	-86	-93	-106	-139	-146	-264	-318	-398	-398	-478
100	120	-72	-66	-97	-137	-131	-144	-210	-210	-310	-310
100	120	-94	-101	-119	-159	-166	-284	-350	-430	-450	-530

(tolerance zones A ... G) DIN 1420

Nominal d			Pe	rmissible up	per and low	er tolerance for hole tole		l reamer dia	meter d ₁ in _l	um	
over	to	A9	A11	В8	B9	B10	B11	C8	C9	C10	C11
	0	+ 291	+ 321	+ 151	+ 161	+ 174	+ 191	+ 71	+ 81	+ 94	+ 111
1	3	+ 282	+ 300	+ 146	+ 152	+ 160	+ 170	+ 66	+ 72	+ 80	+ 90
3	6	+ 295	+ 333	+ 155	+ 165	+ 180	+ 203	+ 85	+ 95	+ 110	+ 133
3	0	+ 284	+ 306	+ 148	+ 154	+ 163	+ 176	+ 78	+ 84	+ 93	+ 106
6	10	+ 310	+ 356	+ 168	+ 180	+ 199	+ 226	+ 98	+ 110	+ 129	+ 156
0	10	+ 297	+ 324	+ 160	+ 167	+ 178	+ 194	+ 90	+ 97	+ 108	+ 124
10	10	+ 326	+ 383	+ 172	+ 186	+ 209	+ 243	+ 117	+ 131	+ 154	+ 188
10	18	+ 310	+ 344	+ 162	+ 170	+ 184	+ 204	+ 107	+ 115	+ 129	+ 149
18	30	+ 344	+ 410	+ 188	+ 204	+ 231	+ 270	+ 138	+ 154	+ 181	+ 220
10	30	+ 325	+ 364	+ 176	+ 185	+ 201	+ 224	+ 126	+ 135	+ 151	+ 174
30	40	+ 362	+ 446	+ 203	+ 222	+ 255	+ 306	+ 153	+ 172	+ 205	+ 256
30	40	+ 340	+ 390	+ 189	+ 200	+ 220	+ 250	+ 139	+ 150	+ 170	+ 200
40	50	+ 372	+ 456	+ 213	+ 232	+ 265	+ 316	+ 163	+ 182	+ 215	+ 266
40	30	+ 350	+ 400	+ 199	+ 210	+ 230	+ 260	+ 149	+ 160	+ 180	+ 210
50	65	+ 402	+ 501	+ 229	+ 252	+ 292	+ 351	+ 179	+ 202	+ 242	+ 301
30	03	+ 376	+ 434	+ 212	+ 226	+ 250	+ 284	+ 162	+ 176	+ 200	+ 234
65	80	+ 422	+ 521	+ 239	+ 262	+ 302	+ 361	+ 189	+ 212	+ 252	+ 311
03	80	+ 396	+ 454	+ 222	+ 236	+ 260	+ 294	+ 172	+ 186	+ 210	+ 244
80	100	+ 453	+ 567	+ 265	+ 293	+ 339	+ 407	+ 215	+ 243	+ 289	+ 357
00	100	+ 422	+ 490	+ 246	+ 262	+ 290	+ 330	+ 196	+ 212	+ 240	+ 280
100	120	+ 483	+ 597	+ 285	+ 313	+ 359	+ 427	+ 225	+ 253	+ 299	+ 367
100	120	+ 452	+ 520	+ 266	+ 282	+ 310	+ 350	+ 206	+ 222	+ 250	+ 290
120	140	+ 545	+ 672	+ 313	+ 345	+ 396	+ 472	+ 253	+ 285	+ 336	+ 412
120	140	+ 510	+ 584	+ 290	+ 310	+ 340	+ 384	+ 230	+ 250	+ 280	+ 324
140	160	+ 605	+ 732	+ 333	+ 365	+ 416	+ 492	+ 263	+ 295	+ 346	+ 422
140	100	+ 570	+ 644	+ 310	+ 330	+ 360	+ 404	+ 240	+ 260	+ 290	+ 334
160	180	+ 665	+ 792	+ 363	+ 395	+ 446	+ 522	+ 283	+ 315	+ 366	+ 442
100	100	+ 630	+ 704	+ 340	+ 360	+ 390	+ 434	+ 260	+ 280	+ 310	+ 354

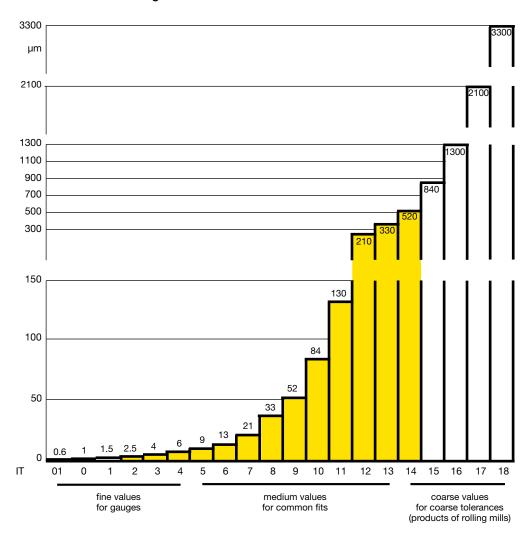
Nominal d in m				Permis	sible upp	er and lov		inces on i		eamer dia	ameter d ₁	in µm		
over	to	D8	D9	D10	D11	E7	E8	E9	F6	F7	F8	F9	G6	G7
1	0	+ 31	+ 41	+ 54	+ 71	+ 22	+ 25	+ 35	+ 11	+ 14	+ 17	+ 27	+ 7	+ 10
ı	3	+ 26	+ 32	+ 40	+ 50	+ 18	+ 20	+ 26	+ 8	+ 10	+ 12	+ 18	+ 4	+ 6
3	6	+ 45	+ 55	+ 70	+ 93	+ 30	+ 35	+ 45	+ 16	+ 20	+ 25	+ 35	+ 10	+ 14
3	0	+ 38	+ 44	+ 53	+ 66	+ 25	+ 28	+ 34	+ 13	+ 15	+ 18	+ 24	+ 7	+ 9
6	10	+ 58	+ 70	+ 89	+ 116	+ 37	+ 43	+ 55	+ 20	+ 25	+ 31	+ 43	+ 12	+ 17
O	10	+ 50	+ 57	+ 68	+ 84	+ 31	+ 35	+ 42	+ 16	+ 19	+ 23	+ 30	+ 8	+ 11
10	18	+ 72	+ 86	+ 109	+ 143	+ 47	+ 54	+ 68	+ 25	+ 31	+ 38	+ 52	+ 15	+ 21
10	10	+ 62	+ 70	+ 84	+ 104	+ 40	+ 44	+ 52	+ 21	+ 24	+ 28	+ 36	+ 11	+ 14
18	30	+ 93	+ 109	+ 136	+ 175	+ 57	+ 68	+ 84	+ 31	+ 37	+ 48	+ 64	+ 18	+ 24
10	30	+ 81	+ 90	+ 106	+ 129	+ 49	+ 56	+ 65	+ 26	+ 29	+ 36	+ 45	+ 13	+ 16
30	50	+ 113	+ 132	+ 165	+ 216	+ 71	+ 83	+ 102	+ 38	+ 46	+ 58	+ 77	+ 22	+ 30
30	30	+ 99	+ 110	+ 130	+ 160	+ 62	+ 69	+ 80	+ 32	+ 37	+ 44	+ 55	+ 16	+ 21
50	80	+ 139	+ 162	+ 202	+ 261	+ 85	+ 99	+ 122	+ 46	+ 55	+ 69	+ 92	+ 26	+ 35
30	80	+ 122	+ 136	+ 160	+ 194	+ 74	+ 82	+ 96	+ 39	+ 44	+ 52	+ 66	+ 19	+ 24
80	120	+ 165	+ 193	+ 239	+ 307	+ 101	+ 117	+ 145	+ 54	+ 65	+ 81	+ 109	+ 30	+ 41
80	120	+ 146	+ 162	+ 190	+ 230	+ 88	+ 98	+ 114	+ 46	+ 52	+ 62	+ 78	+ 22	+ 28
120	180	+ 198	+ 230	+ 281	+ 357	+ 119	+ 138	+ 170	+ 64	+ 77	+ 96	+ 128	+ 35	+ 48
120	100	+ 175	+ 195	+ 225	+ 269	+ 105	+ 115	+ 135	+ 55	+ 63	+ 73	+ 93	+ 26	+ 34

(tolerance zones H ... P) DIN 1420

Nominal diameter in mm			Perm	nissible u	ipper and		olerances hole tole			ner diam	eter d ₁ ii	n µm		
over to	H6	H7	H8	H9	H10	H11	H12	J6	J7	J8	JS6	JS7	JS8	JS9
.1 0	+ 5	+ 8	+11	+21	+ 34	+ 51	+ 85	+ 1	+ 2	+ 3	+ 2	+ 3	+ 4	+ 8
>13	+ 2	+ 4	+ 6	+12	+ 20	+ 30	+ 50	- 2	- 2	-2	- 1	- 1	- 1	- 1
>36	+ 6	+10	+15	+25	+ 40	+ 63	+102	+ 3	+ 4	+ 7	+ 2	+ 4	+ 6	+10
>30	+ 3	+ 5	+ 8	+14	+ 23	+ 36	+ 60	0	- 1	0	- 1	- 1	- 1	- 1
>610	+ 7	+12	+18	+30	+ 49	+ 76	+127	+ 3	+ 5	+ 8	+ 3	+ 5	+ 7	+12
>010	+ 3	+ 6	+10	+17	+ 28	+ 44	+ 74	- 1	– 1	0	- 1	- 1	- 1	- 1
. 10 10	+ 9	+15	+22	+36	+ 59	+ 93	+153	+ 4	+ 7	+10	+ 3	+ 6	+ 8	+15
>1018	+ 5	+ 8	+12	+20	+ 34	+ 54	+ 90	0	0	0	- 1	- 1	- 1	- 1
>1830	+11	+17	+28	+44	+ 71	+110	+178	+ 6	+ 8	+15	+ 4	+ 7	+11	+18
>1030	+ 6	+ 9	+16	+25	+ 41	+ 64	+104	+ 1	0	+ 3	- 1	- 1	- 1	- 1
>3050	+13	+21	+33	+52	+ 85	+136	+212	+ 7	+10	+18	+ 5	+ 8	+13	+21
>3030	+ 7	+12	+19	+30	+ 50	+ 80	+124	+ 1	+ 1	+ 4	- 1	- 1	- 1	- 1
>5080	+16	+25	+39	+62	+102	+161	+255	+10	+13	+21	+ 6	+10	+16	+25
>5060	+ 9	+14	+22	+36	+ 60	+ 94	+150	+ 3	+ 2	+ 4	- 1	- 1	- 1	- 1
>80120	+18	+29	+45	+73	+119	+187	+297	+12	+16	+25	+ 7	+12	+18	+30
>00120	+10	+16	+26	+42	+ 70	+110	+174	+ 4	+ 3	+ 6	- 1	- 1	- 1	- 1
>120180	+21	+34	+53	+85	+136	+212	+340	+14	+20	+31	+ 8	+14	+22	+35
∕12U10U	+12	+20	+30	+50	+ 80	+124	+200	+ 5	+ 6	+ 8	- 1	0	- 1	0

Nominal o				Perr	missible ι	upper an		olerance hole tole			mer diam	ieter d ₁ ii	n µm		
over	to	K6	K7	K8	M6	M7	M8	N6	N7	N8	N9	N10	N11	P6	P7
1	3	- 1	- 2	- 3	- 3	- 4		- 5	- 6	- 7	- 8	-10	- 13	- 7	- 8
ı	3	- 4	- 6	- 8	- 6	- 8		- 8	-10	-12	-17	-24	- 34	-10	-12
3	6	0	+ 1	+ 2	- 3	- 2	- 1	- 7	- 6	- 5	- 5	- 8	- 12	-11	-10
3	0	- 3	- 4	- 5	- 6	- 7	- 8	-10	-11	-12	-16	-25	- 39	-14	-15
6	10	0	+ 2	+ 2	- 5	- 3	- 3	- 9	- 7	- 7	- 6	- 9	- 14	-14	-12
O	10	- 4	- 4	- 6	- 9	- 9	-11	-13	-13	-15	-19	-30	- 46	-18	-18
10	18	0	+ 3	+ 3	- 6	- 3	- 3	-11	- 8	- 8	- 7	-11	- 17	-17	-14
10	10	- 4	- 4	- 7	-10	-10	-13	-15	-15	-18	-23	-36	- 56	-21	-21
18	30	0	+ 2	+ 5	- 6	- 4	- 1	-13	-11	- 8	- 8	-13	- 20	-20	-1
10	30	- 5	- 6	- 7	-11	-12	-13	-18	-19	-20	-27	-43	- 66	-25	-26
30	50	0	+ 3	+ 6	- 7	- 4	- 1	-15	-12	- 9	-10	-15	- 24	-24	-21
30	30	- 6	- 6	- 8	-13	-13	-15	-21	-21	-23	-32	-50	- 80	-30	-30
50	80	+ 1	+ 4	+ 7	- 8	- 5	- 2	-17	-14	-11	-12	-18	- 29	-29	-26
30	00	- 6	- 7	-10	-15	-16	-19	-24	-25	-28	-38	-60	- 96	-36	-37
80	120	0	+ 4	+ 7	-10	- 6	- 3	-20	-16	-13	-14	-21	- 33	-34	-30
00	120	- 8	- 9	-12	-18	-19	-22	-28	-29	-32	-45	-70	-110	-42	-43
120	180	0	+ 6	+10	-12	- 6	- 2	-24	-18	-14	-15	-24	- 38	-40	-43
120	100	- 9	- 8	-13	-21	-20	-25	-33	-32	-37	-50	-80	-126	-49	-48

164


(tolerance zones R ... Z) DIN 1420

Nominal d in m				Permiss	ible upper		tolerance or hole tol			r diameter	d ₁ in μm		
over	to	R6	R7	S6	S7	T6	U6	U7	U10	X10	X11	Z10	Z11
	0	- 11	- 12	- 15	- 16		- 19	- 20				- 32	-
1	3	- 14	- 16	- 18	- 20		- 22	- 24				- 46	
3	6	- 14	- 13	- 18	- 17		- 22	- 21	- 31			- 43	
3	U	- 17	- 18	- 21	- 22		- 25	- 26	- 48			- 60	
6	10	- 18	- 16	- 22	- 20		- 27	- 25	- 37			- 51	
U	10	- 22	- 22	- 26	- 26		- 31	- 31	- 58			- 72	
10	14	- 22	- 19	- 27	- 24		- 32	- 29	- 44			- 61	
10	14	- 26	- 26	- 31	- 31		- 36	- 36	- 69			- 86	
14	18	- 22	- 19	- 27	- 24		- 32	- 29	- 44	- 56		- 71	
1-7	10	- 26	- 26	- 31	- 31		- 36	- 36	- 69	- 81		- 96	
18	24	- 26	- 24	- 33	- 31		- 39	- 37		- 67		- 86	
10	24	- 31	- 32	- 38	- 39		- 44	- 45		- 97		-116	
24	30	- 26	- 24	- 33	- 31	- 39	- 46	- 44		- 77		-101	-108
27	00	- 31	- 32	- 38	- 39	- 44	- 51	- 52		-107		-131	-154
30	40	- 32	- 29	- 41	- 38	- 46	- 58	- 55		- 95		-127	-136
00	40	- 38	- 38	- 47	- 47	- 52	- 64	- 64		-130		-162	-192
40	50	- 32	- 29	- 41	- 38	- 52	- 68	- 65	- 85	-112		-151	-160
40	00	- 38	- 38	- 47	- 47	- 58	- 74	- 74	-120	-147		-186	-216
50	65	- 38	- 35	- 50	- 47	- 63	- 84	- 81	-105	-140	-151	-190	-201
00	00	- 45	- 46	- 57	- 58	- 70	- 91	- 92	-147	-182	-218	-232	-268
65	80	- 40	- 37	- 56	- 53	- 72	- 99	- 96	-120	-164	-175	-228	-239
	00	- 47	- 48	- 63	- 64	- 79	-106	-107	-162	-206	-242	-270	-306
80	100	- 48	- 44	- 68	- 64	- 88	-121	-117	-145	-199	-211	-279	-291
		- 56	- 57	- 76	- 77	- 96	-129	-130	-194	-248	-288	-328	-368
100	120	- 51	- 47	- 76	- 72	-101	-141	-137	-165	-231	-243	-331	-343
	0	- 59	- 60	- 84	- 85	-109	-149	-150	-214	-280	-320	-380	-420
120	140	- 60	- 54	- 89	- 83	-119	-167	-161	-194	-272	-286	-389	-403
		- 69	- 68	- 98	- 97	-128	-176	-175	-250	-328	-374	-445	-491
140	160	- 62	- 56	- 97	- 91	-131	-187	-181	-214	-304	-318	-439	-453
-		- 71	- 70	-106	-105	-140	-196	-195	-270	-360	-406	-495	-541
160	180	- 65	- 59	-105	- 99	-143	-207	-201	-234	-334	-348	-489	-503
		- 74	- 73	-114	-113	-152	-216	-215	-290	-390	-436	-545	-591

	ge of al size						IT ir	ıμm					
m	ım	3	4	5	6	7	8	9	10	11	12	13	14
from to	1 3	2	3	4	6	10	14	25	40	60	100	140	250
over to	3 6	2.5	4	5	8	12	18	30	48	75	120	180	300
over to	6 10	2.5	4	6	9	15	22	36	58	90	150	220	360
over to	10 18	3	5	8	11	18	27	43	70	110	180	270	430
over to	18 30	4	6	9	13	21	33	52	84	130	210	330	520
over to	30 50	4	7	11	16	25	39	62	100	160	250	390	620
over to	50 80	5	8	13	19	30	46	74	120	190	300	460	740
over to	80 120	6	10	15	22	35	54	87	140	220	350	540	870

Example: Basic ISO tolerances for a range of nominal sizes over 18 to 30 mm

General remarks for the determination of manufacturing tolerances for reamers

The manufacturing tolerances to DIN 1420 are allocated to certain tolerance zones of the holes to be reamed. Generally they ensure the positioning of reamed holes within the relevant tolerance zone as well as the most economical use of the reamer.

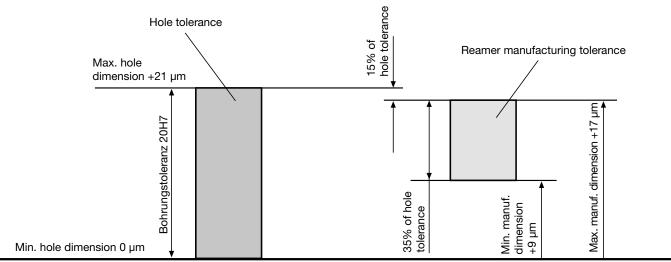
It must, however, be taken into account that the size of the reamed hole depends, in addition to the manufacturing tolerance of the reamer, on various other factors, such as angles of cutting edges; bevel lead of reamer; clamping of the workpiece; the tool holder; condition of the machine; the coolant and on the material of the workpiece. Therefore, from time to time other manufacturing tolerances than IT7 (H7) might prove more advantageous.

However, in the interest of economic production and storage, it is recommended that non-standard manufacturing tolerances are used only in exceptional cases.

For determing the manufacturing tolerances the following well-proven *basic rules* were stipulated:

Determination of perm. max. and min. sizes of reamers

The largest permitted reamer diameter ranges at about 15% of the approximate hole tolerance (0.15 IT) below the permissible maximum diameter of the hole (see fig.), whereby the value 0.15 IT will be rounded of to the next higher integer or half μ m-value, so that even μ m values are derived for d_{1} max. The permissible smallest reamer diameter d_{1} min ranges at about 35% of the approximate hole tolerance (0.35 IT) below the permissible maximum diameter d_{1} max (ex. 1).


Simplified determination of permissible max. and min. reamer dimensions

In order to facilitate calculations, the table on page 15 indicates the upper and lower tolerance limits on the nominal diameter d_1 for the most common "H" tolerance zones. With the aid of these tolerance limits the permissible maximum and minimum reamer dimensions can be calculated (ex. 2).

Example 1			
nominal diameter d1	= 20.000 mm	minimum reamer diameter:	
maximum diameter of the hole	= 20.021 mm	$d_{1 \text{ min}} = d_{1 \text{ max}} - 0.35 \text{ IT } 7$	
hole tolerance (IT 7)	= 0.021 mm	= 20.017 - 0.008	= <u>20.009 mm</u>
15% of the hole tolerance (0.15 IT 7)	= 0.0031 mm		
	≈ 0.004 mm	Example 2	
maximum reamer diameter:		nominal diameter d1	= 20.000 mm
d1 max = 20.021 - 0.004	= <u>20.017 mm</u>	upper tol limit (s. table p. 70) + 17 µm	= 0.017 mm
manufacturing tolerance of reamer:		lower tol. limit (s. table p. 70) + 9 µm	= 0.009 mm
35% of the hole tolerance (0.35 IT 7)	= 0.0073 mm	i. e.: $d_{1 \text{ max}} = 20.000 + 0.017$	= <u>20.017 mm</u>
	≈ 0.008 mm	$d_{1 \text{ min}} = 20.000 + 0.009$	= 20.009 mm

Simplified calculation of the permissible maximum and minimum dimensions for reamers

Example: Hole tolerance zone Ø 20 H7/nom. dimension d1 of reamer 20 mm

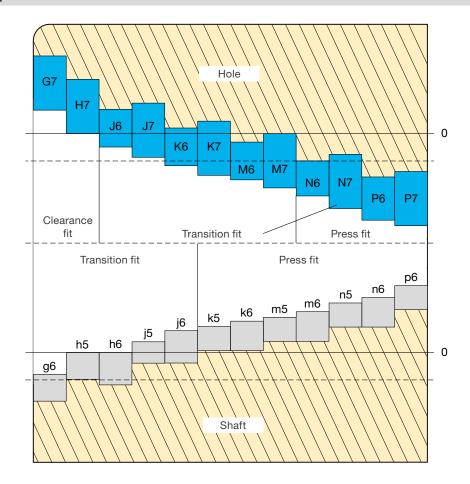
Zero line Ø 20.0

GUHRING 167

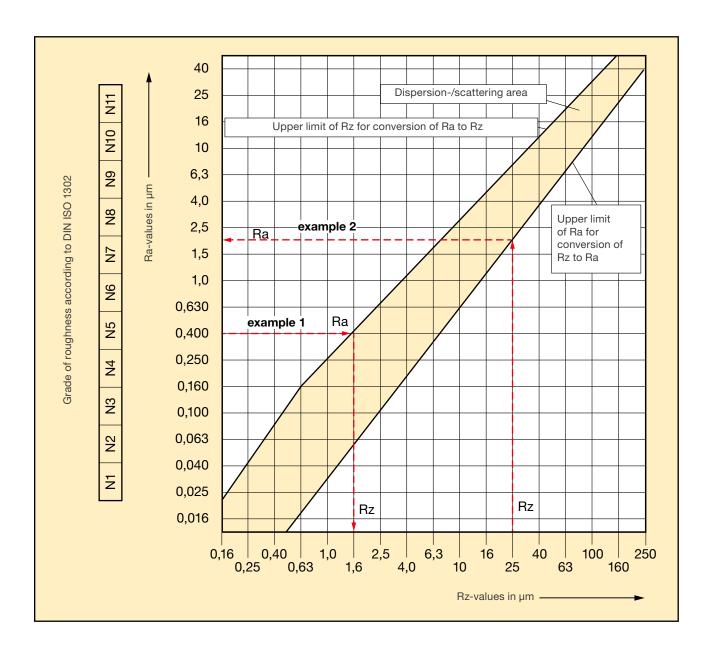
Designation

For the designation of reamers the ISO abbreviation for the tolerance zone of the hole is indicated after the nominal diameter. Designation of a reamer with nominal diameter d1 = 20 mm, for hole tolerance H 7:

reamer 20 H 7 DIN ... (" ... ": for DIN no. indication of appropriate reamer)


In special cases, reamers are ordered with maximum and minimum dimensions deviating from this standard, the ISO abbreviation for the hole tolerance zone must be replaced

by the upper and lower tolerance limit of the reamer in μ m, e.g. for a reamer with a nominal diameter d1 = 20 mm, upper tolerance limit = + (p) 25 μ m and lower tolerance limit = + (p) 15 μ m:


reamer 20 p 25 p 15 DIN ...

The designation shows a 'p' instead of the plus and an 'm' instead of the minus sign, because »+« and » – « cannot be written on all machines, particularly not on data processing machines.

Tolerance position

Conversion ratio to DIN 47

Reading example: 1

When comparing the average roughness index R_a = 0.4 μm to the average roughness R_z we achieve a value of R_z = 1.6 μm .

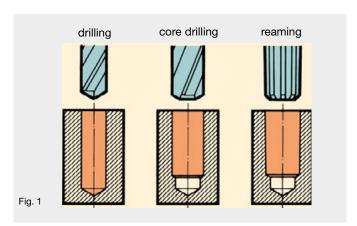
Reading example: 2

When comparing the average roughness R_z = 25 μm to the average roughness index R_a we achieve a value of R_a = 2 μm .

GUHRING 169

	Roughness classes	N11	N10	N9	N	 18	N7	N	6	N5	N4	N3	N2	N1
	Average roughness Ra	25	12.5	6.3	3	.2	1.6	0.	8	0.4	0.2	0.1	0.05	0.025
	Average peak-to-valley height Rz	100	63	40	25	16	10	6.3	4	2.5	1.6	1	0.63	0.25
Р	Struct. steel, low-alloyed steels: Case-hard. and heat-treat. steels													
М	Stainless steels Heat-resistant steels													
	Grey cast iron, ferritic				Ī									
· K	Grey cast iron, pearlitic													
IX.	Spheroidal graphite iron, ferritic				i									
	Spheroidal graphite iron, pearlitic													
	Copper-alloy, brass													
	Aluminium wrought alloy													
· N	Aluminium cast alloy: Si-content < 10 %													
	Aluminium cast alloy: Si-content > 10 %							İ						
_	Special alloy: Inconel													
S	Titanium, titanium alloys													
	Hardened steel < 45 HRC							†						
· H	Hardened steel > 45 HRC, ≤ 63 HRC							İ				•		

achievable limited achievability


170

Tens. strength (N/mm²)	HRC	HB30	HV10	Tens. strength (N/mm²)	HRC	HB30	HV10
240		71	75	1200	38	354	373
255		76	80	1230	39	363	382
270		81	85	1260	40	372	392
285		86	90	1300	41	383	403
305		90	95	1330	42	393	413
320		95	100	1360	43	402	423
335		100	105	1400	44	413	434
350		105	110	1440	45	424	446
370		109	115	1480	46	435	458
385		114	120	1530	47	449	473
400		119	125	1570	48	460	484
415		124	130	1620	49	472	497
430		128	135	1680	50	488	514
450		133	140	1730	51	501	527
465		138	145	1790	52	517	544
480		143	150	1845	53	532	560
495		147	155	1910	54	549	578
510		152	160	1980	55	567	596
530		157	165	2050	56	584	615
545		162	170	2140	57	607	639
560		166	175	2180	58	622	655
				2100		OZZ	
575 595		171 176	180 185		59 60		675
610		181	190		61		698 720
625		185	195		62		745
640		190	200		63		773
660		195	205		64		800
675		199	210		65		829
690		204	215		66		864
705		209	220		67		900
720		214	225		68		940
740		219	230				
755		223	235				
770		228	240				
785		233	245				
800	22	238	250				
820	23	242	255				
835	24	247	260				
860	25	255	268				
870	26	258	272				
900	27	266	280				
920	28	273	287				
940	29	278	293				
970	30	287	302				
995	31	295	310				
1020	32	301	317				
1050	33	311	327				
1080	34	319	336				
1110	35	328	345				
1140	36	337	355				
1170	37	346	364				

The reamer is the most commonly used tool for the production of holes true to form and tolerance with high surface quality. The latter meets the requirement of 'finishing' or 'fine finishing' i.e. from approximately Ra 0.2 to 6.5 μm according to the scales laid down in DIN 4766. However, finishes to Ra = 0.5 μm can be regarded as satisfactory. Generally, the achievable tolerance ranks at IT 7. In special cases IT 6 or even IT 5 are possible, provided that the reamer is appropriately ground and all other operating conditions meet the high specifications.

In preparation for the reaming process, holes have to be pre-drilled and normally core drilled (fig. 1). Pre-drilled holes produced with gun drills, are due to their highly compressed surface, not particularly suitable for reaming. Moreover, holes produced with gun drills show generally excellent tolerances on fit and surface qualities, so that additional fine finishing is usually not required. Should any further information on our gun drills be needed, please do not hesitate to contact us.

Which reamer for which purpose?

With regard to their application we differentiate between:

- hand reamers
- machine reamers

Hand reamers

Hand reamers are turned in the hole by means of a tap wrench which is mounted on the square. The feeding action is produced manually. Because of the low cutting rates these tools are made of HSS. To ensure a proper guidance in the hole the taper lead length of hand reamers is made considerably longer than that of machine reamers. Hand reamers are available for both cylindrical and tapered holes.

Hand reamers to DIN 859 may be adjusted within the elasticity tolerance range of hardened HSS. This corresponds in practice to 1% of the diameter, i.e. for example 0.1 mm on a reamer with 10 mm diameter. In the fully expanded condition these tools are not very resistant to breakage and must therefore be protected against impact. They should be stored with the tension released.

Expanding reamers can be adjusted over a much larger range, even up to a few millimeters! For accuracy reasons setting must be carried out with a ring gauge.

A basic rule for reaming by hand: turn the tool only in the cutting direction, i.e. never reverse the tool contrary to standard practice in thread cutting. Cutting edges will become immediately blunt if the reamer is turned back.

Fig. 4: expanding hand reamer with blades

Machine reamers

Machine reamers are - as the name implies - exclusively designed for use on machines and differ with regard to the type of tool material. Due to the possibility of higher cutting values, these tools are available in HSS-E, solid carbide or carbide-tipped (fig. 5). The tool material should be selected in accordance with the material to be machined.

Fig. 5: carbide-tipped machine reamer

Carbide reamers offer the following advantages:

- Higher cutting speeds and feed rates.
- Most economic machining of materials of over 1200 mm² tensile strength.
- The tool life is much higher than that of HSS-E reamers.

Reamers with special form

Reamers with special form and to special tolerances have recently become more and more common place. Their manufacture requires a great deal of know-how as well as the most modern and sophisticated tooling. We have all the machines and the knowledge to produce even the most complicated tools very economically. Leave the machining problems to us. To meet and overcome them is the daily task of our engineers. They are ready to assist you at all times, to find the best possible solution and, if necessary, to arrange for an obligation-free demonstration of our tools on your own machines.

A further distinctive feature of hand and machine reamers is the geometry of the cutting section, standardised under the following headings:

- straight-fluted reamers
- LH spiral reamers
- reamers with quick spiral (45°) left-hand flutes

Tools with right-hand spiral flutes are only applied in special cases. They produce, as do twist drills, a chip flow up the flutes, which often results in an unsatisfactory surface finish quality.

Reamers with straight flutes are suitable for the machining of blind holes. Here again the absence of chip space at the bottom of the hole means that swarf must be evacuated up the reamer flutes. For all other machining tasks, and particularly for interrupted holes (e.g. holes with keyways, intersecting holes and the like), reamers with left-hand spiral flutes are much more suitable. Chip removal is always in the direction of the feed and for this reason this flute geometry is used almost exclusively for through holes. Their application in blind holes is limited to tasks where reaming to the full depth is not required, so that sufficient space for the chip volume created is available.

Fig. 6: machine roughing reamer

Fig. 7: machine bottoming reamer

The 45° LH quick spiral reamer (fig. 6) has been well tried and tested in long-chipping materials. For absolutely straight and precisely located deep holes we recommend our machine bottoming reamers (fig. 7). Their bevel lead is face-cutting, i.e., they do not cut in conformity with the pre-drilled hole, but correct it truly to size. Machine bottoming reamers should always be applied with bushings.

Fig. 8: stepped carbide-tipped machine reamer

Accuracy in surface quality and form is tremendously improved by dividing the machining process into rough and finishing reaming. Stepped machine reamers (fig. 8) perform these two operations in one pass.

Badly worn taper pin reamers can be salvaged by resharpening of taper and reduction of circular land width.

Storage of reamers

Reamers are finishing tools and therefore very vulnerable. To avoid damage, individual storage and transport in our plastic sleeves is recommended. Tools reward careful treatment by producing excellent results and giving much higher operational life.

Blind hole or through hole

Straight-fluted reamers are gene-rally applied in blind holes as they, due to their cutting edge geometry, evacuate the chips from the hole against the direction of the feed. Spiral reamers are preferred for the application in through holes because the spiral evacuates the chips from the hole in direction of the feed.

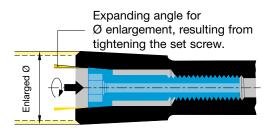
Interrupted holes

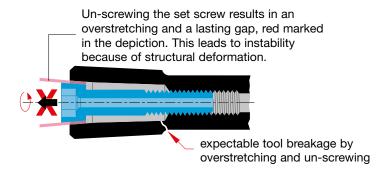
Spiral reamers are preferred for the application in interrupted holes because the cutting edge geometry, in comparison to straight-fluted tools, possesses a lesser tendency of grabbing on the oblique hole. If the oblique hole is $> 0.25 \times D$, spiral reamers can also be applied in blind holes.

Stock removal allowance of the pre-drilled hole

In the event of the stock removal allowance of the pre-drilled hole exceeding the standard stock removal allowance (see table "Recommended stock allowance" on page 15), a quick spiral reamer or a machine bridge reamer should be applied. It is possible to machine a considerably larger stock removal allowance with these tools, however, they should not be applied in blind holes due to the bevel lead length and the spiral angle.

Expanding reamers


Expanding reamers can only be expanded. Subsequently, if the resulting measurement is too large it is not possible to turn the screw back as the pretension of the tool would be lost. In most cases this leads to tool breakage. If the pre-tension has been taken from the tool, it requires re-adjusting and regrinding.


Positional accuracy of the hole

A machine bottoming reamer often provides the best solution when optimal positional accuracy is required, thanks to its special chamfer lead the 'wander' of the tool is minimal. In addition, machine bottoming reamers are often applied when the pre-drilled hole and the reamer are not on the same axis (slight misalignment).

Schematic depiction of expanding and of risk of tool breakage when re-turning set screw (excessive depiction)

No distance between taper-shaped set screw and taper hole.

Carbide reamer designs

Our carbide grades are applied in the following reamer types:

- Solid carbide NC machine reamers: Solid carbide
- Carbide machine reamers:
- ≤ Ø 9.50 mm solid carbide
- > Ø 9.50 mm carbide tipped
- Carbide expanding machine reamers:
 Carbide tipped

Expanding Reamers Adjustment range

Expanding reamers can be adjusted by the following values according to the diameter range:

- \geq Ø 12 mm by approx. 0.015 mm
- \geq Ø 17 mm by approx. 0.020 mm
- \geq Ø 24 mm by approx. 0.025 mm
- \geq Ø 32 mm by approx. 0.030 mm

Attention:

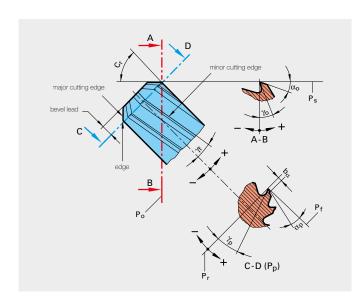
Only expand reamer! Because of risk of breakage the pretension should never be relieved by turning the set screw anti-clockwise!

Expanding reamers Adjustment range

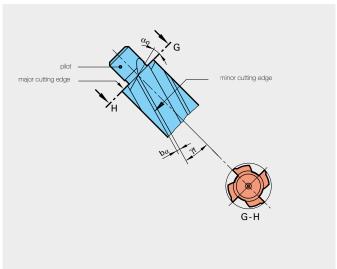
Expanding reamers have an adjustment range of approx. 0.03 mm via a tapered adjustment screw.

Adjustable hand reamers Adjustment range

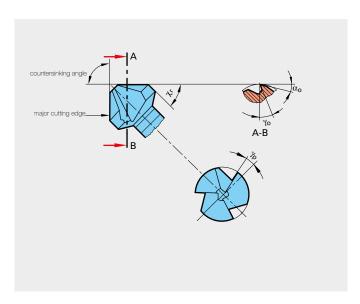
Adjustable hand reamers are ground to nominal size and not for holes with tolerance zone H7. The adjustment range is 1/100 of the nominal diameter, i.e. for Ø 10.00 mm approximately 0.1 mm. From Ø 6.50 mm adjustment is via lock nut.


Shell reamers Taper bore

Shell reamers to DIN 219 have a taper bore with a taper 1:30 and a driving slot to DIN 138.



Definitions, dimensions and angles


Reamers

Counterbores

Countersinks

 $\begin{array}{rcl} \alpha_{\text{o}} & = & \text{clearance angle} \\ \alpha_{\text{p}} & = & \text{clearance angle of minor cutting edge} \\ b_{\alpha} & = & \text{circular land width} \end{array}$

= orthogonal rake angle

= helix angle γ_{f}

= back rake angle of minor cutting edge

face setting angle tool orthogonal plane assumed operating plane

tool back plane tool reference plane tool cutting edge plane

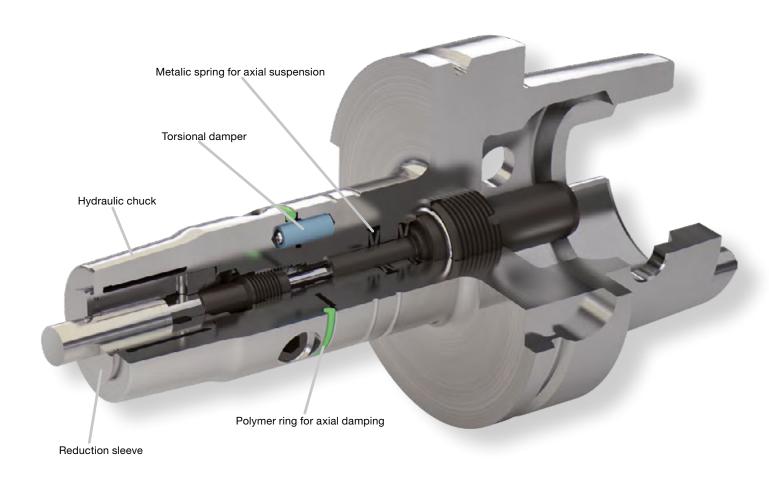
176

Clamping systems GM 300

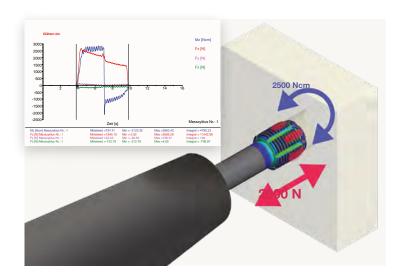
<u>180</u>	Comparison of tool holder characteristics
<u>182</u>	GühroSync
<u> 184</u>	Configuration of GÜHROSync synchro tapping chucks
	with straight shank for internal cooling
<u>185</u>	Configuration of synchro tapping chucks for conventional cooling
<u>186</u>	MQL
<u> 186</u>	Technology and advantages
<u>187</u>	MQL System Finder
<u> 188</u>	Configuration of GÜHROSync tapping chucks for internal cooling with MQL
<u>189</u>	Configuration of MQL synchro tapping chucks
<u>190</u>	The minimal quantity lubrication MQL 1-channel technology
<u>192</u>	MQL technology
<u>197</u>	Installation coolant supply set/MQL coolant supply unit
<u> 198</u>	Assembly/disassembly tool for MQL and M contour clamping sets
<u>199</u>	MQL-Check 3001
<u> 200</u>	Overview of modules 6x6
<u> 201</u>	Overview of modules 4x4
<u> 202</u>	4-point clamping technology for MQL
<u> 205</u>	The 4-point clamping technology for conventional cooling
<u> 208</u>	PowerClamp technology
<u>211</u>	The HSK interface
<u>216</u>	ISO taper DIN ISO 7388-1 and MAS/BT DIN ISO 7388-2
<u>217</u>	Effects of imbalance on machine spindles, tool holders and tools
<u>219</u>	Shrink fit chucks and shrink fit systems
<u>220</u>	Operating instructions for Hydraulic chucks
<u>221</u>	Hydraulic chucks
222	Installation dimensions for hek adaptor

Clamping obuoks /	TSG 3000 / shrink fit chucks / shrink fit extensions	Hydraulic chucks / HMC 3000 / reduction bushes			
Clamping chucks / tool holders for straight tool shanks					
Characteristics	maximum concentricity; very slender non-interference; good rigidity; high clamping force; modular lenghtening; patented dampening screw ensures concentricity	high dampening with maximum concentricity; simple handling; flexible application thanks to reduction bushes also with GÜHROJET			
Main application	drilling, countersinking, milling, reaming, universal and HSC applicatio	reaming, drilling, countersinking, HSC application, light milling			
Main feature	accurate and universal; slender; high clamping force	simple handling			
Concentricity	< 3μm	< 3μm			
with 5xD	< 5μm	< 5μm			
Clamping force	very high	very high			
Rigidity	very high	high			
Dampening	low	very high			
Interference contour	small / minimal	medium			
Handling	good	very good / very flexible			
Actuation	shrink fit device e.g. GSS 2000 article no. 4742	hexagon key e.g. article no. 4912			

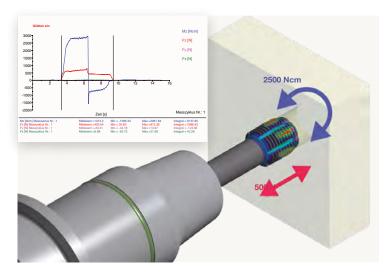
HPC precision power chucks / clamping sleeves	Straight shank holders "Weldon" / "Whistle-Notch"	Collet chucks ER	
maximum clamping force and rigidity thanks to mechancal clamping transmission; high accuracy and balancing quality; flexible application thanks to clamping sleeves also with GÜHROJET	robust, cost-efficient clamping chuck for heavy machining in the lower speed and accuracy range	very flexible clamping chuck for various shank dimensions and tolerances; for lower level machining tasks	
heavy HPC and fast accurate HSC milling, drilling, universal application	roughing, milling, drilling	light machining, centering, chamfering, drilling, threading; intermediate shank dimensions	
highest clamping force and rigidity	simple operation; secure clamping	highly flexible	
< 3μm	< 10μm	< 10μm	
< 8μm	< 25µm	< 20μm	
extremely high	very safe	medium	
extremely high	very high	low	
high	low	high	
medium	large	large (mini = small)	
very good / flexible	good	good	
hexagon key / torque wrench e.g. article no. 4915 + 4916 type D	hexagon key torque: information at clamping screw article no. 4903	hook spanner max. torque: information at clamping screw article no. 4903	

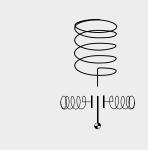

GÜHROSync

The easy way to the perfect thread

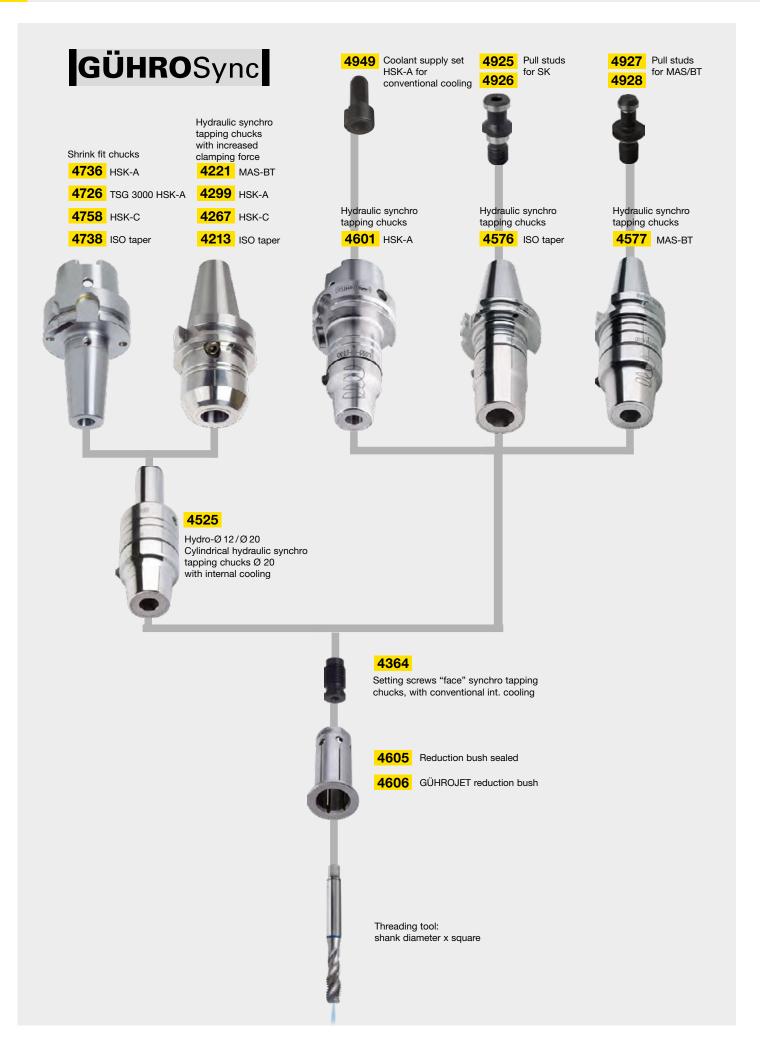

Intelligent design:

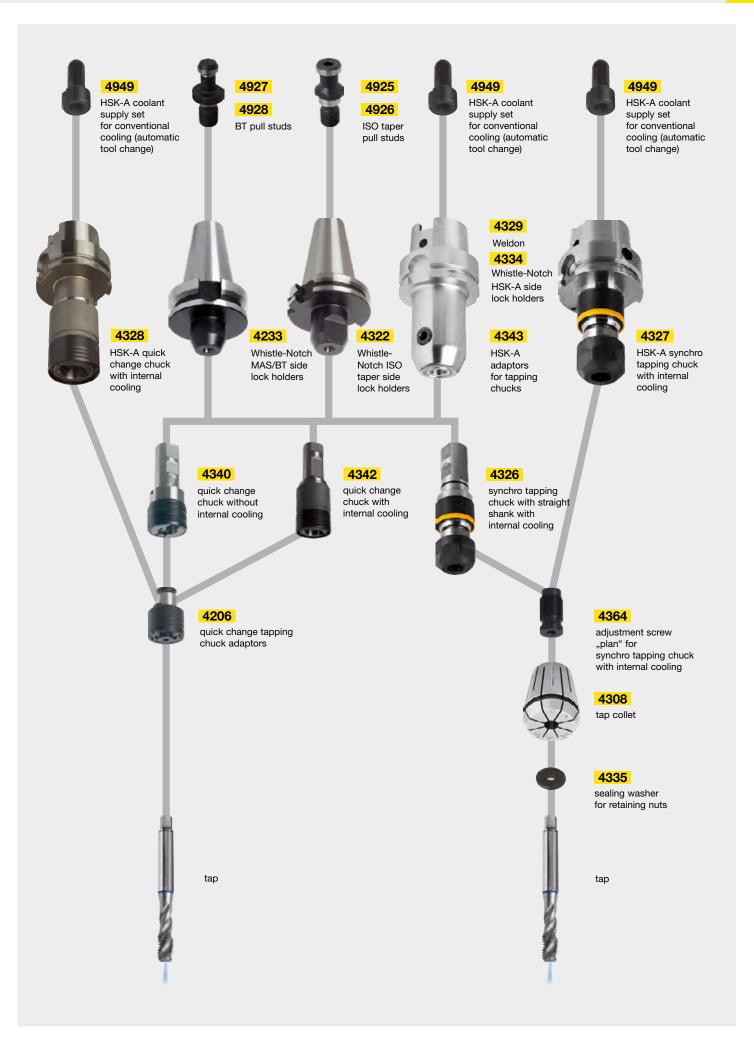
As well as the suspension and damping elements in the slender GÜHROSync chucks (for the reduction of axial and radial forces during the tapping process) there is also room for the supply set for MQL or conventional cooling lubrication and the length setting screw.


- improved tool life
- improved thread quality
- greater process reliability


The optimal combination of long-life metal spring and polymer damping elements considerably reduces axial and radial forces.

Rigid chuck


GÜHROSync

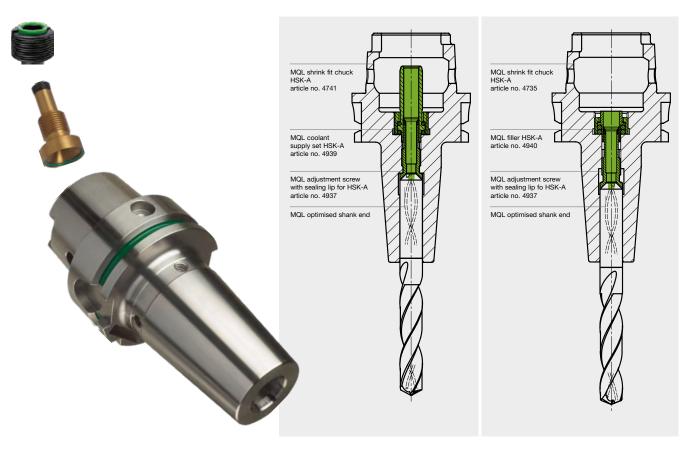

Made visible:

The spring symbol on the GÜHROSync displays the effect of axial and radial force.

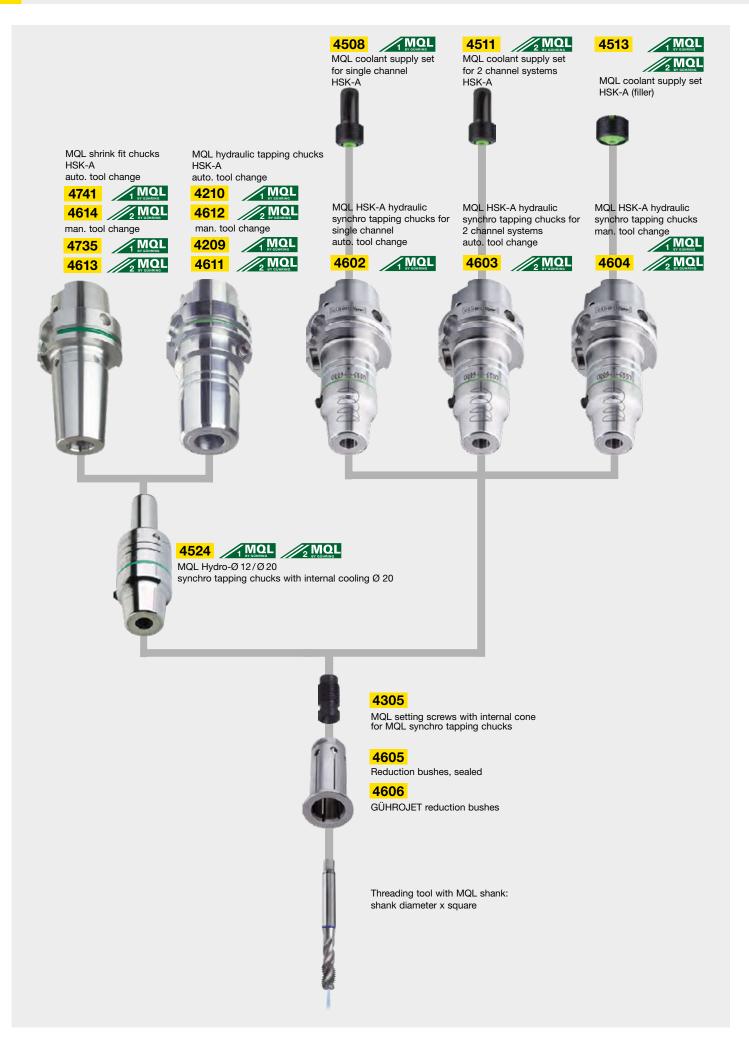
BY GÜHRING

Technology and advantages

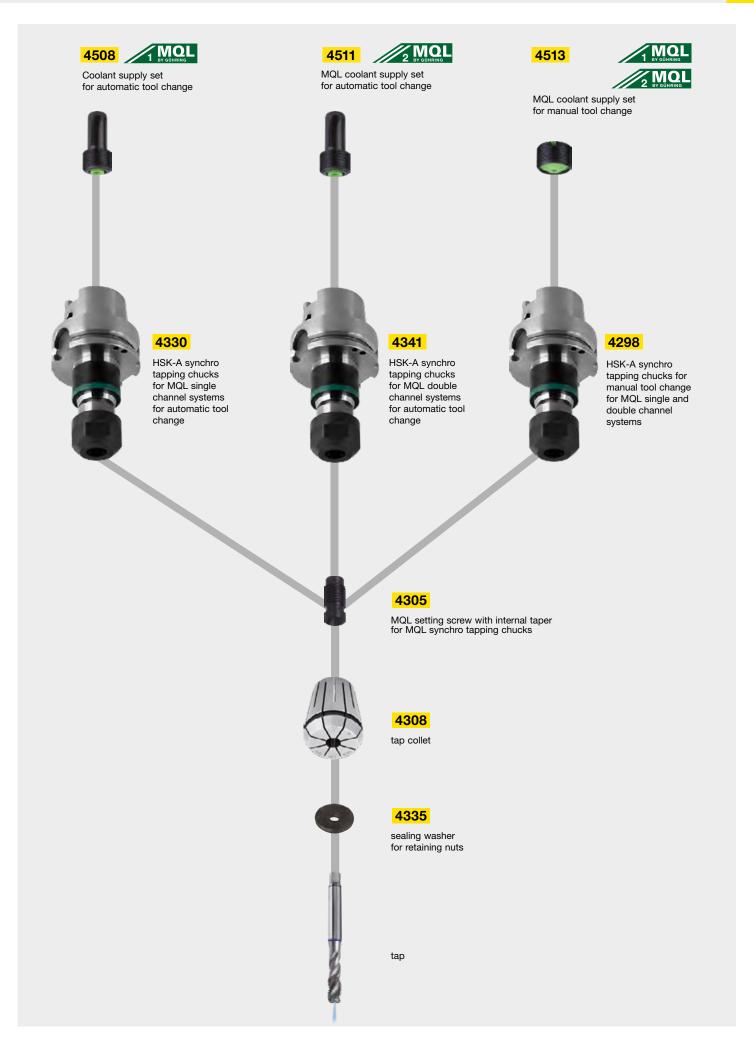
- · cost reduction due to reduced cleaning
- environment & health protection
- less cooling lubrication requirement high coolant effect
- low process temperatures
- lower working temperature at tool point
- uninterrupted cooling lubricant supply
- direct response without losses
- high compatibility

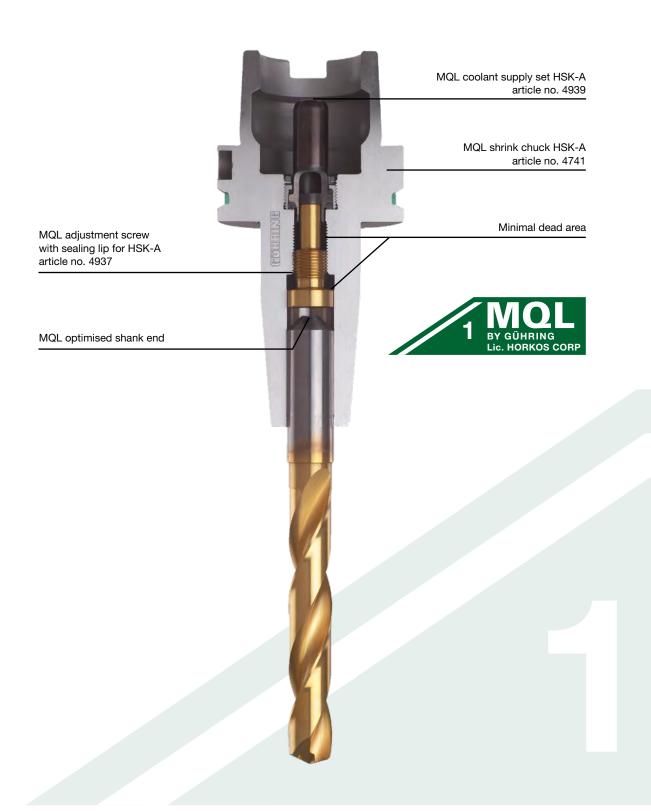


			HSK-A for automatic tool change	HSK-A for manual tool change
	Hydraulic chucks		4210	4209
T MOL	Shrink fit chucks	4	4741	4735
	Synchro-chucks		4330	4298
МОГ ВУ СОНЯІИС	Hydraulic chucks		4612	4611
8 %	Shrink fit chucks	el.	4614	4613
	Synchro-chucks		4341	4298


automatic tool change

manual tool change


187

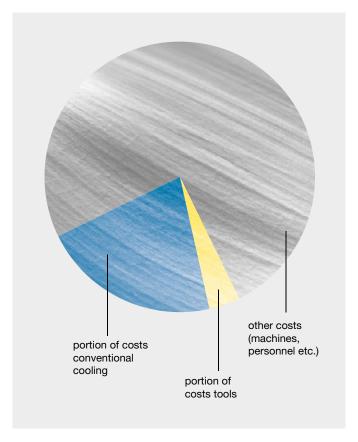


Our products for the MQL 1-channel technology are identified by this symbol.

Visual feature of the 1-channel system is the gold coloured MQL length setting screw.

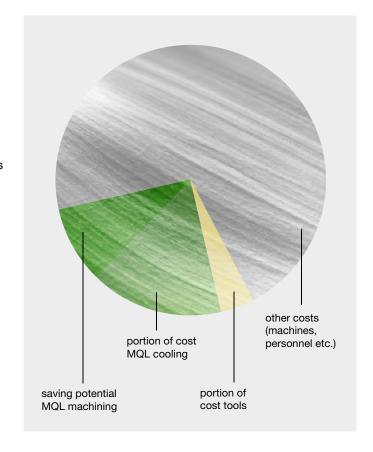
Our products for the MQL 2-channel technology are identified by this symbol.

Visual feature of the 2-channel system is the black coloured MQL length setting screw.



Introduction

Alongside the machine and tooling the costs for coolant are a considerable portion of the overall cost of the machining process. Therefore, a reduction in the cooling lubrication requirements offers a potential for cost savings.


The reduction of cooling lubricants is not only cost saving but is also of benefit to the environment and health protection. Gühring is one of the pioneers in the research and development of MQL that began in the mid 1990's.

The aim of MQL machining

The acquisition of a new MQL cooling lubricant system is significantly less expensive than conventional cooling!

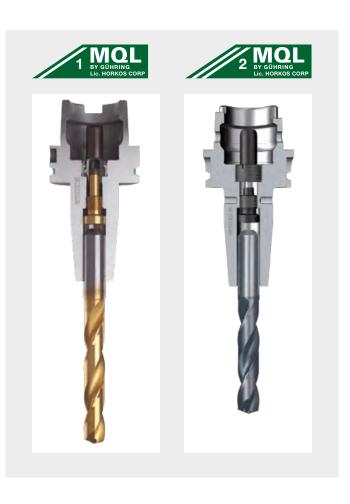
- reduction of thermal stresses at the tool point
- · less tool wear
- effective chip evacuation from deep holes
- reduction of cooling lubricant requirement
- high cooling and lubrication effect especially in deep holes
- lowering the resulting costs such as:
 - component cleaning costs
 - cooling lubricant disposal costs
 - swarf disposal costs
- environment and health protection

The development of present-day MQL systems

Thanks to the research in MQL machining Gühring created the pre-condition for a practical MQL technology. From the clamping set to the tool's cutting edge all the components were integrated in the development – the result was the first MQL supply system.

Features:

- modular constructed and standardised system
- MQL and conventional clamping set are freely interchangeable thanks to an identical spindle contour
- hydraulic, shrink fit and synchro chucks are all designed for the MQL clamping set

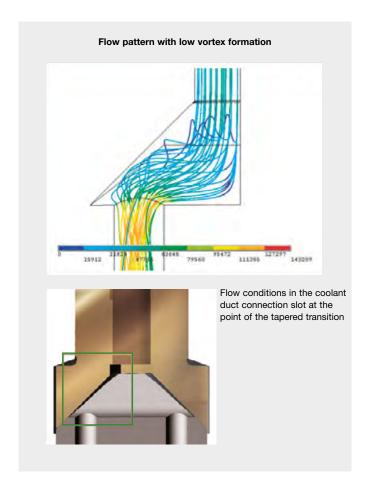

Gühring's current MQL system

By incorporating the MQL length adjustment screw to Gühring's first MQL supply system in 2007, the original drawback was eliminated. There is, therefore, currently a MQL supply system available to the customer that optimally meets the requirements of the present-day production process.

Features of the first Gühring MQL supply system:

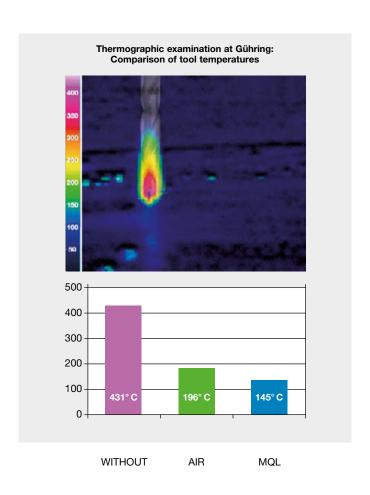
- no lubricant delays
- special MQL coolant supply unit
- MQL suitable tool shank end
- tapered length setting screw

The user, therefore, benefits from a standardised system and a clearly reduced stock keeping thanks to compatible components.



Optimally formed shank end! For a secure MQL supply

The supply of these extremely low coolant quantities directly to the effective area is of utmost importance. Hereby, the geometric design of the shank end plays a significant role! The Gühring developed conical shank end optimally satisfies the relevant MQL conditions.


Advantages of the tapered shank end:

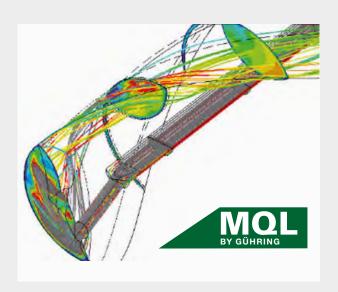
- no lubricant delays
- minimal dead area
- simple operation
- cost-efficient production

Keeping a cool point

With MQL the process temperature can be considerably reduced in comparison to dry machining resulting in longer tool life and an increased process reliability.

The best form for MQL!

Optimal MQL machining results thanks to the optimised tool geometry of RT 100 T!

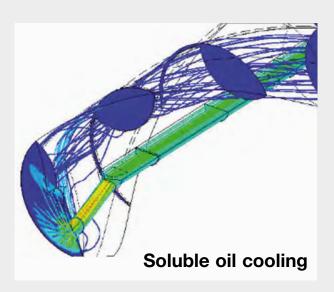

1. Flute cross section:

The flute geometry of Gühring MQL tools ensures short chips that are optimally evacuated from deep holes.

2. Maximum coolant duct cross-section:

The cooling lubricant supply as well as the chip evacuation have been optimised through the tool' maximum coolant duct cross-section.

Flow speed comparison


The flow speed

in the flute with MQL is 30.4 m/s.

The volume with MQL is 6.960 l/h (std.litres air/h).

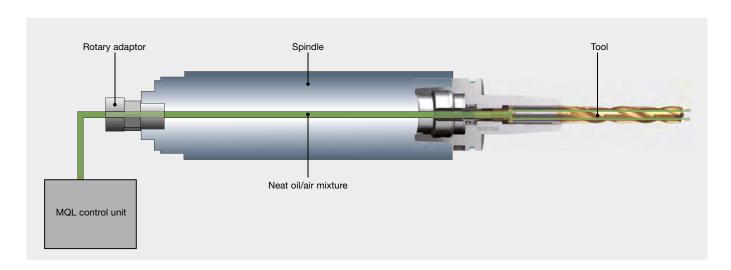
Tool \emptyset = 11.7 mm Pressure at pump = 6 bar Pressure at tool = 4 bar

The flow speed

In the flute with soluble oil is 3.5 m/s.

The volume with soluble oil is 600 l/h (std.litres air/h).

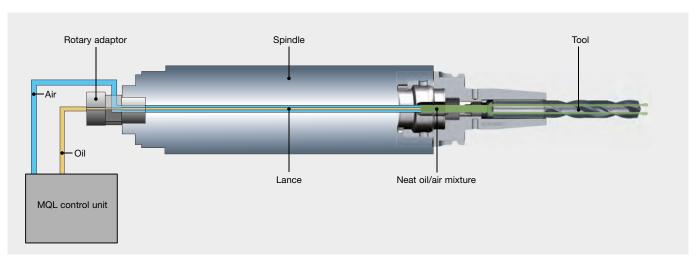
Tool \emptyset = 11.7 mm Pressure at pump = 60 bar Pressure at tool = 31 bar


MQL system types

The provision of the MQL medium to the tool can be achieved in two ways: the aerosol mixture can be prepared outside the machine and conveyed to the machining location (1-channel system) or compressed air and MQL medium are conveyed separately to the mixing chamber where they are then mixed together (2-channel system).

The aerosol feed to the machining location is achieved via a suitable minimal quantity lubrication rotary adaptor (preferably with axial flowthrough), the spindle, the clamping system and finally the cutting tool. Unavoidable cross-section modifications should be as streamlined as possible.

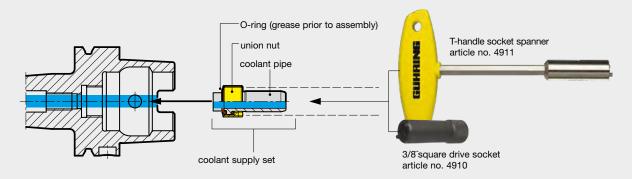
1-channel MQL system


With a 1-channel MQL system, a lubricating aerosol is created in a separate MQL unit attached to the machine tool. Special nozzle systems inside a pressurised container create a lubricating aerosol via a regulated compressed air feed, its neat oil content adjustable and then maintained within the physical limits by the MQL control.

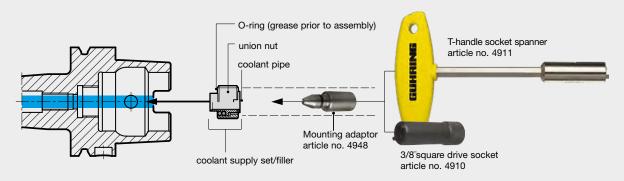
The 2-channel MQL system

With a 2-channel system the neat oil reaches the rotary adaptor from the unit via a ring line and a as short as possible stub line. In it is incorporated a quick valve that regulates minute quantities of neat oil. The neat oil is transported into the tool holder via a lance attached in the spindle. The second channel of the rotary adaptor is used for the air supply to the tool holder. Only at this point the air is mixed with the neat oil.

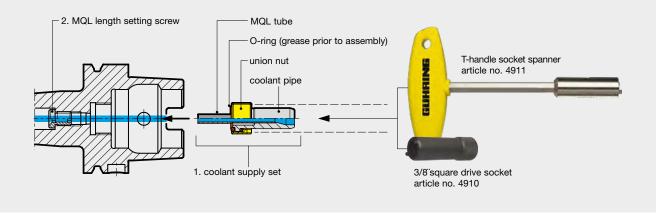
To achieve this, the tool holder possesses a pressed-in pipe nozzle in which the mixing chamber is located. Neat oil and air can be mixed with this system in more or less any quantities. The route from the mixing chamber to the point of destination is only minimal resulting in a rapid response time and allowing a very quick alteration of the volume of neat oil.


installation Instructions

- 1. The HSK holder must be clean, free of swarf and undamaged.
- 2. Grease the O-rings prior to assembly.
- 3. Centrally insert the complete coolant supply set (coolant pipe, union nut and 2 O-rings) in the HSK with the assistance of the socket spanner. When inserting the MQL coolant supply unit, it is paramount to ensure that the MQL pipe is inserted centrally and undamaged into the MQL length setting screw (do not kink).
- 4. Screw in the coolant supply set/coolant supply unit and tighten (see table for torque figures)
- 5. Check coolant pipe for radial mobility.

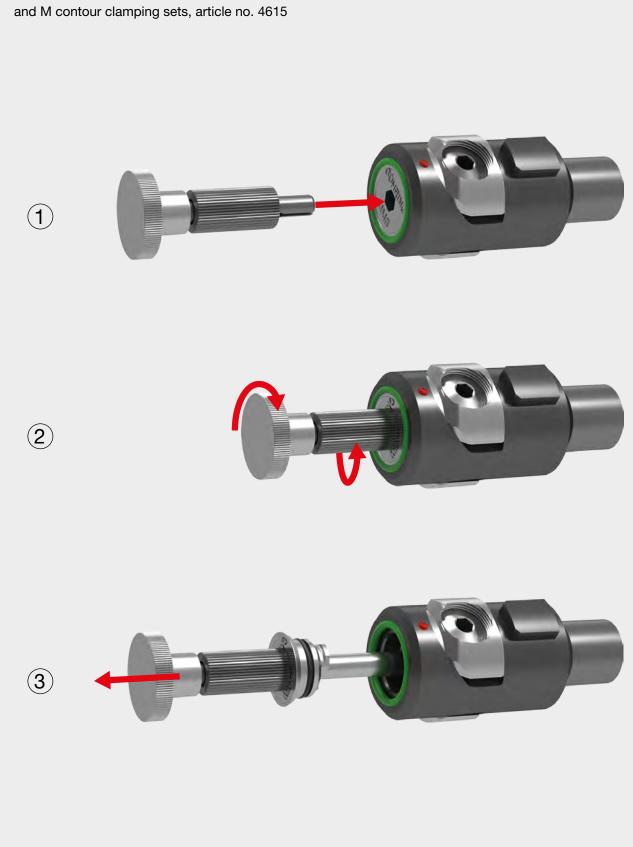

Torque figures

for HSK	MA Nm
32	7
40	11
50	15
63	20
80	25
100	30


Installation of MQL coolant supply set article no. 4939

Installation of MQL coolant supply set filler article no. 4940

Installation of MQL coolant supply unit article no. 4623/4924



Assembly instructions

Product information

for assembly and disassembly of ejectors of MQL clamping sets, article no. 4930, and M contour clamping sets, article no. 4615

MQL-Check 3001

Measurement directly at tool tip

In particular with minimum quantity lubrication it is very essential that very little quantities of lubrication are perfectly applied on the tool's cutting edge.

Deficient supply or long response times may have fatal consequences, which are premature wear, lower processing quality or even tool breakages. If the quantity of lubrication is too high, this may lead to a cost-intensive and needless lubricant consumption and extra cleaning effort on components or/and machines. The MQL Check 3001 is a measuring device provided by Gühring which is easy in operation and which allows fast and reliable checking of the lubrication quantity directly at the tool's tip.

The MQL Check 3001 is fastened inside the machine via magnet points before the zero point of the plunging depth is determined via the tool's tip. After the tool has been positioned in the measuring device and the start command has been transmitted via the software, MQL supply can be started. The measuring device sends the collected data to the respective software on PC/laptop via bluetooth.

- simple, quick measurements of the coolant volume directly at the tool point
- reproduceable and at any time comparable measuring data
- it also comes with a master tool for cross-checking the MQL test stand → in order to check the function of the MQL device, machine, spindle, tool holder and tool
- a workshop suitable system, wireless operation in terms of power supply as well as data transfer

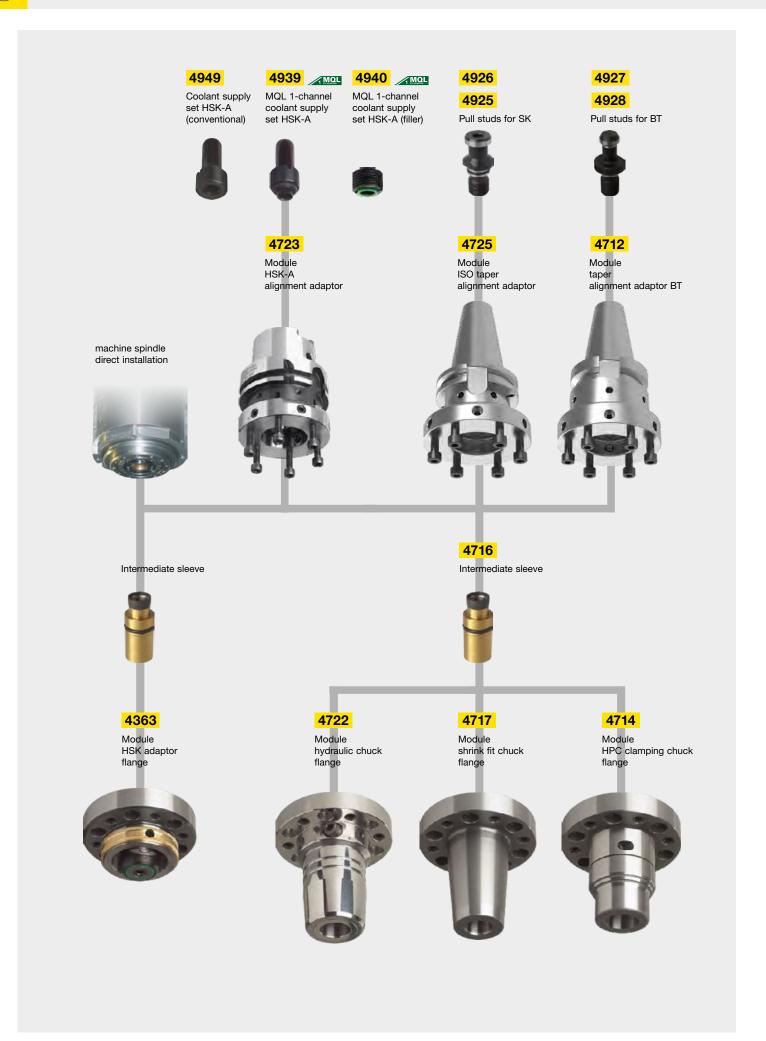
Note:
Only tools with axial coolant duct exits can be checked by means of the MQL Check 3001

Technical Data

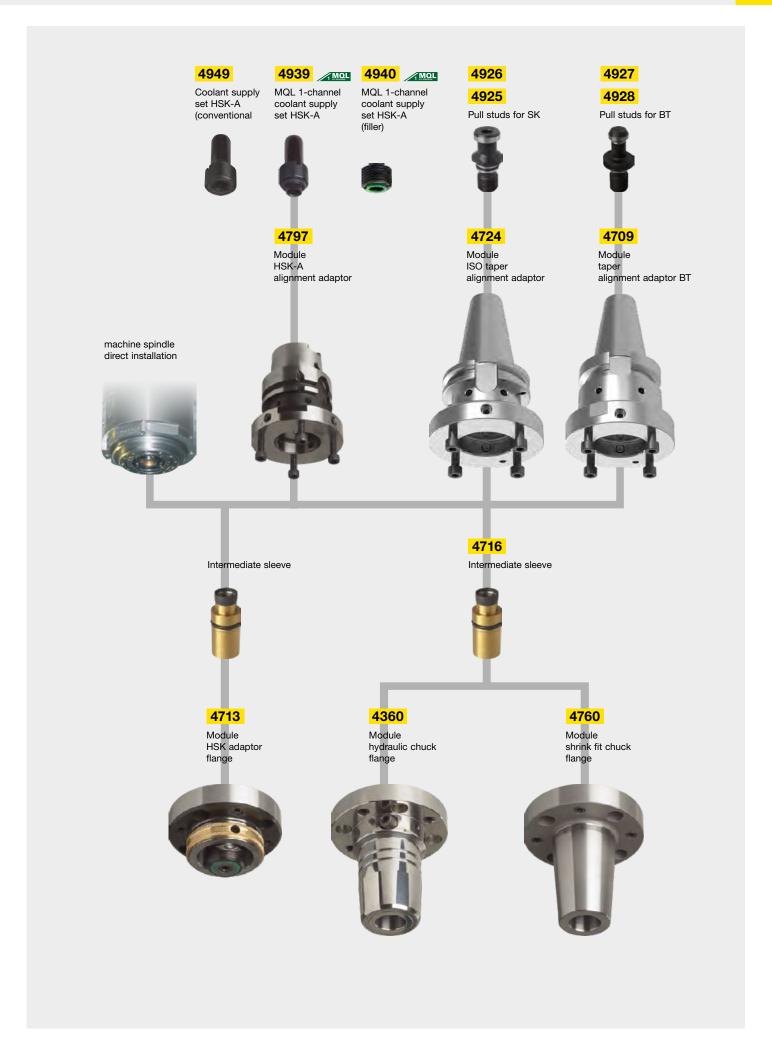
Measuring range 10 to 160 ml/h

Tool diameter range 3 to 21.5 mm

Measuring position 0 to 90°


(vertical and horizontal machining)

Radio range approx. 50 m


(at optimal conditions)

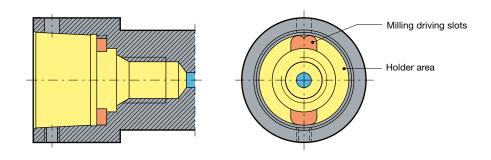
MQL-Check 3001 consists of:

- Measuring device incl. bluetooth sender and magnet foot for fastening during horizontal processing
- Software for measured data logging
- 10 measuring filter
- Battery + power pack

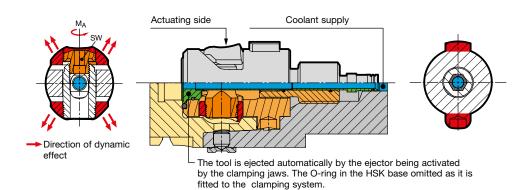
4-point clamping technology for MQL

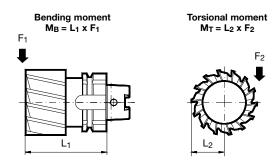
Technical information and advantages

Our 4-point clamping system is suitable for radial manual clamping. Primarily designed for installation in spindles (short drilling spindles. multiple-spindle drilling heads).


Advantages:

- simple and hence more economic spindle manufacture
- short. small diameter spindles with constricted spindle bearing spacing
- suitable for a pressure up to 160 bar (for conventional internal cooling)
- fast response time thanks to uninterupted MQL supply
- compatible installation contour and application of our 4-point clamping set for conventional cooling
- fixed installation through screwed joint, prebalanced, good rotation symmetry, therefore high-speed capability


202

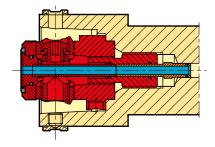

Internal contour of spindle

Installation and principle of operation

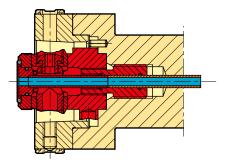
Bending. torsional and tightening moment for 4-point clamping sets for MQL

- ① We recommend M_A max. for rough machining and milling operations. For drilling and reaming operations a lower deviation of M_A max. up to 30% is permissible. Please check the torque with a torque wrench.
- ② Depending on temperature and lubricating conditions these values can be up to 15% lower.

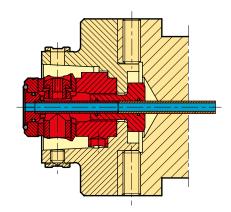
HSK-C	max. torque M _A [Nm] ⊕	Key size	max. drawing force [kN] ②	max. linear bending moment MB [Nm] @	max. transferrable torsional moment
32	3.0	2.5	8.5	72	105
40	6.0	3.0	12.5	135	180
50	12.0	4.0	24.0	330	390
63	24.0	5.0	32.0	570	680
80	40.0	6.0	45.0	1000	1570
100	60.0	8.0	53.0	1620	4200


General notes: Our manual clamping sets must not be operated with motor-driven tools (impulse screwdriver or similar). The hexagonal key should not exceed the key size over its entire length, this largely prevents excessive torque being transferred. We recommend the T-handle hexagonal key, article no. 4912.

For accurate setting of the maximum torque and achieving the maximum interface rigidity, we recommend the application of a torque wrench, article no. 4915 with hexagonal sockets, article no. 4916. Production drawings of the spindle contour to suit direct installation are available on request, including .dxf.



MQL 4-point clamping set connection dimensions for new designs


Direct installation in spindle with MQL adaptor

Short spindle adaptor with MQL supply pipe

Adaptor (in front) with MQL supply pipe

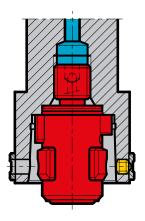
The 4-point clamping technology for conventional cooling

Technical information and advantages

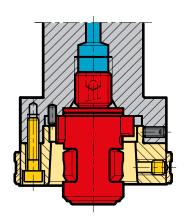
Conventional 4-point clamping sets offer enormous clamping force and optimal cooling lubricant supply. They are suitable for radial manual HSK tool clamping.

Advantages:

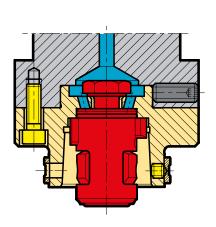
- simple and hence more economic spindle manufacture
- short, small diameter spindles with constricted spindle bearing spacing
- suitable for a pressure up to 80 bar



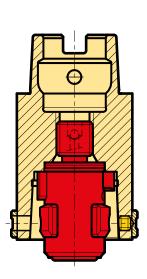
General notes: Our manual clamping sets must not be operated with motor-driven tools (impulse screwdriver or similar). The hexagonal key should not exceed the key size over its entire length. this largely prevents excessive torque being transferred. We recommend the T-handle hexagonal key, article no. 4912. For accurate setting of the maximum torque and achieving the maximum interface rigidity. we recommend the application of a torque wrench, article no. 4915 with hexagonal sockets, article no. 4916. Removal of the locking ring is made by releasing the pressure ball screw. This is achieved with the use of an Allen key inserted through the opposite access hole and through the hollow threaded spindle and turned anticlockwise. Once released, the locking ring will slide axially off. Production drawings of the spindle contour to suit direct installation are available on request, including .dxf.

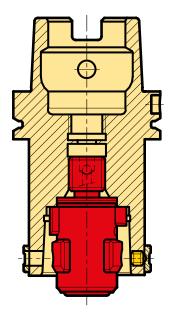

Application examples

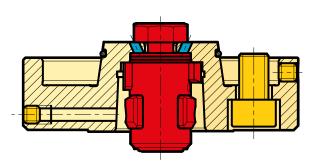
Spindle interface


Direct installation in spindle

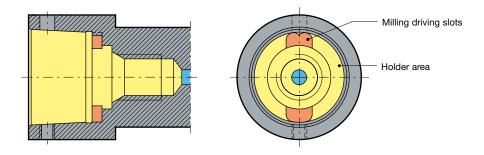
Spindle adaptor (integrated)

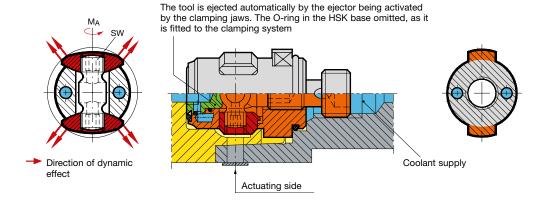

Spindle adaptor (in front)

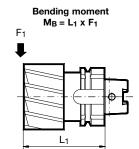

Adaptor

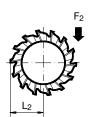

Basic adaptor for ISO taper spindles

HSK-C extension


HSK-A reduction




Internal contour of spindle


Installation and principle of operation

Bending torsional and tightening moment for 4-point clamping sets for conventional cooling

- ① We recommend M_A max. for rough machining and milling operations. For drilling and reaming operations a lower deviation of M_A max. up to 30% is permissible. Please check the torque with a torque wrench.
- ② Depending on temperature and lubricating conditions these values can be up to 15% lower.
- $\ensuremath{\mathfrak{J}}$ Due to the screwed connection. M_T max. can be lower with adaptors.

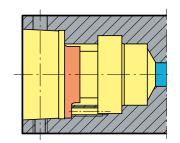
HSK-C	max. torque M _A [Nm] ①	Key size	max. drawing force [kN] ②	max. linear bending moment M _B [Nm] ②	max. transferrable torsional moment M _T [Nm] ② ③
25	1.5	2.5	4.5	30	30
32	3.0	2.5	7.0	60	100
40	6.0	3.0	12.0	130	170
50	14.0	4.0	20.0	280	350
63	27.0	5.0	28.0	500	640
80	54.0	6.0	40.0	900	1330

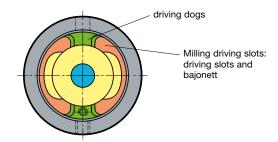
PowerClamp

Technical information and advantages

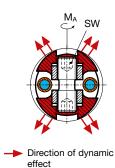
Gühring's PowerClamp system is designed for universal applications in transfer lines, machining centres, turning centres and setting equipment.

Due to high pull forces the PowerClamp is suitable for low-speed operations in heavy machining.

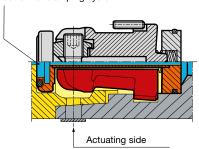

Advantages:


- simple assembly thanks to uncomplicated spindle contour
- few moving components, therefore optimal force transmission
- high clamping force, therefore excellent bending resistance
- secure ejector function
- internal coolant supply
- coolant sealing from p > 6 bar to max. 80 bar

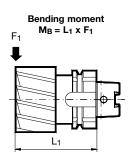
208



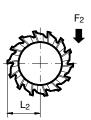
Internal contour of spindle



Installation and principle of operation



The O-ring in the HSK base omitted, as it is fitted to the clamping system

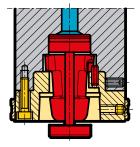


Bending torsional and tightening moment for PowerClamp

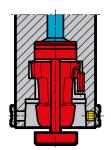
Torsional moment $M_T = L_2 \times F_2$

- ① We recommend M_A max. for rough machining and milling operations. For drilling and reaming operations a lower deviation of M_A max. up to 30% is permissible. Please check the torque with a torque wrench.
- ② Depending on temperature and lubricating conditions these values can be up to 15% lower.
- $\ensuremath{\mathfrak{G}}$ Due to the screwed connection. M_T max. can be lower with adaptors.

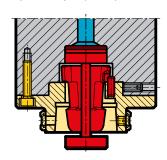
HSK-C	max. torque M _A [Nm] ①	Key size	max. drawing force [kN] ②	max. linear bending moment M _B [Nm] ②	max. transferrable torsional moment M _T [Nm] ② ③
25	1.5	2.0	5	45	50
32	2.5	2.5	8	74	120
40	6.0	3.0	18	213	360
50	10.0	4.0	27	431	1000
63	15.0	5.0	35	703	1300
80	25.0	6.0	50	1100	2800
100	50.0	8.0	60	1620	4800



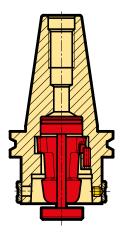
General notes: Our manual clamping sets must not be operated with motor-driven tools (impulse screwdriver or similar). The hexagonal key should not exceed the key size over its entire length. this largely prevents excessive torque being transferred. We recommend the T-handle hexagonal key, article no. 4912. For accurate setting of the maximum torque and achieving the maximum interface rigidity. we recommend the application of a torque wrench, article no. 4915 with hexagonal sockets, article no. 4916. Production drawings of the spindle contour to suit direct installation are available on request, including .dxf.


Application examples

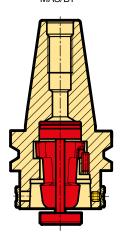
Spindle interface


integrated spindle adaptor

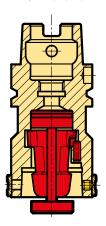
Direct installation in spindle

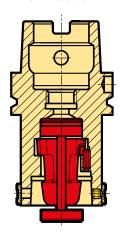


Spindle adaptor (in front)



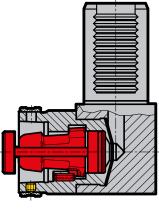
Adaptor


DIN ISO 7388-1 form AD


MAS/BT

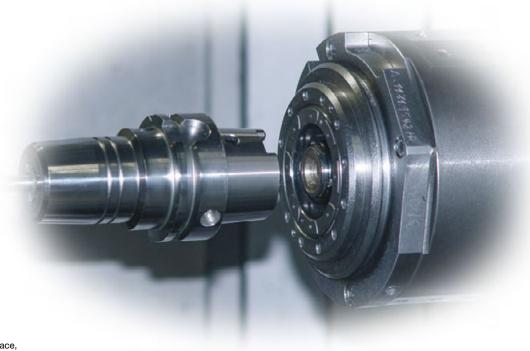
HSK-A extention

HSK-A reduction



Tool holder for turning centers

adaptor (in front) on VDI angle holder



adaptor (in front) on VDI vertical holder

Technical information and advantages

HSK-A 63 interface, automatic tool change

Our modular tooling system GM 300 has been developed for the application of rotating and stationary tools. 1987 we devloped the GM 300 coupling. Standardisation for this interface (DIN 69893) was obtained in1991. Since 12/2001 the HSK interface is also standard to ISO 12164-1/-2. The unique design of the clamping method offers not only an ideal interface for manual clamping within the tooling system, but also an ideal interface for automatic clamping directly to the machine spindle (fig. 1) or tool holder.

Characteristic feature:

Tapered holow shank (HSK) with axial plane clamping mechanism according to DIN 69893. The most important advantages are as follows:

ISO taper DIN 2080 DIN ISO 7388-1	HSK form A/C/(E) DIN 69893 part 1	HSK form B/D/(F) DIN 69893 part 2
-	HSK 40	HSK 50
SK30	HSK 50	HSK 63
SK40	HSK 63	HSK 80
SK45	HSK 80	HSK 100
SK50	HSK 100	HSK 125

Association between ISO taper - hollow taper shank

• High static and dynamic rigidity

The radial and axial forces generated in the tool shank provide the clamping forse necessary for extreme rigidity (fig. 2). Recommended values for the GM-300 module for manual clamping.

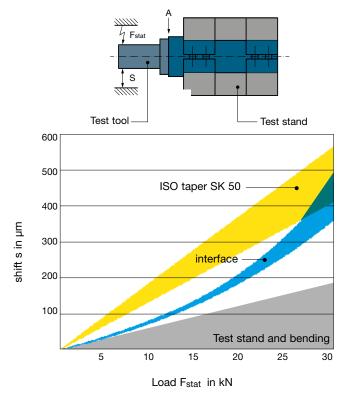


Fig. 2 Static deflection: Comparison between ISO taper 50 and automatic interface HSK-A 100 (A)

Technical information and advantages

• High torque transmission and defined radial positioning

The wedging effect between the hollow taper shank and the holder or spindle causes a friction contact over the full taper surface and the plane supporting face (fig. 3). Two keys engage with the shank end of the tool holder and provide form-closed, radial positioning, thereby excluding any possible setting errors.

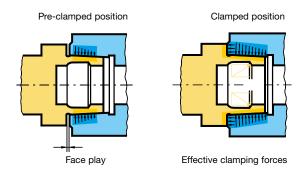
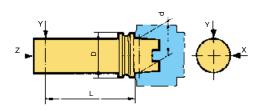



Fig. 3
Prestressing and frictional forces of hollow taper shank at the interface.

· High tool change accuracy and repeatability

The circular form engagement of the clamping claws within the hollow tool shqank provides a totally tight connection between the shank and spindle or holder respectively (fig. 3 and 4).

HSK-size D	d mm	L mm	X mm	Y mm	Z mm
32	24	50	0.002	0.002	0.002
40	30	60	0.002	0.002	0.002
50	38	75	0.002	0.002	0.002
63	48	100	0.002	0.002	0.002
100	75	150	0.002	0.002	0.002

Fig. 4 Radial and axial repeatability of interface for manual and automatic clamping

High speed machining performance

The higher the number of revolutions the better, as this increases both the power and effectiveness of the locking of the clamping mechanism. The direct initial stress between the hollow taper shank and the spindle holder compensates for the spindle expansion generated by the centrifugal force so that there is absolutely no radial play (fig. 3). The plane clamping position prevents any slipping in the axial direction.

. Short tool changing time

Efficient tool change due to a short shank length (approx. 1/3 of the conventional ISO taper) and light weight (approx. 50% of the ISO taper).

• Simple, cost-efficient shank design

No moving components at the tool shank means no wearing parts.

· Insensitive to foreign matter

The uninterrupted design of the ring-shaped axial plane clamping simplifies the cleaning of the coupling. During automatic tool change compressed air provides ideal cleaning in the interface.

Coding and identification

To allow for the attachment of common identification systems, a hole of 10 mm dia. and 4.5 mm depth is provided for the data media (coding chips) in the vicinity of the collar.

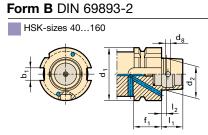
• Standardising of interface

The hollow taper shanks by GÜHRING are conform with ISO 12164-1/DIN 698936. Version form "E" with access hole in taper for manual clamping.

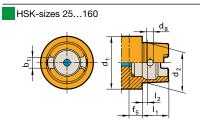
Coolant feed

The tools for automatic clamping, HSK-A and E, are designed for a central coolant feed by means of a duct. Tools with manual change behind the GM 300 interface also operate with a central coolant feed. The clamping elements are entirely sealed against the entry of coolant so that fouling is prevented.

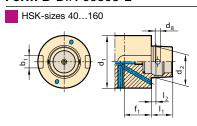
Installation of the coolant supply set


Coolant supply sets are to be ordered separately for all GM 300 modules. The installation of the coolant duct must be carried out by the user.

General overview of HSK shanks ISO 12164-1/DIN 69893

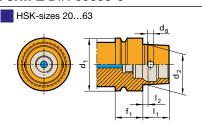

Form A ISO 12164-1/DIN 69893-1

HSK-sizes 25...160

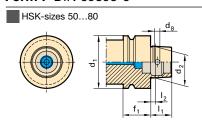


HSK for automatic tool change with gripper groove and index notch. Manual operation is via access hole in taper. Form B relies on driving dogs on the joint face as shank isn't slotted. Torque is transmitted through highly accurate connnection.

Form C ISO 12164-1/DIN 69893-1



Form **D** DIN 69893-2



HSK for manual tool change. Operation is via access hole in taper. Form D relies on driving dogs on the joint face as shank isn't slotted. Torque is transmitted through highly accurate connnection.

Form E DIN 69893-5

Form F DIN 69893-6

HSK for automatic tool change. Torque is transmitted through highly accurate connnection. Version with access hole acc. to DIN 69893-1 by arrangement. HSK-E/F by Gühring are supplied with access

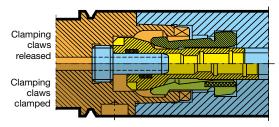
					HSK form	ACE				
Nominal Ø										
d ₁ mm				d ₂ mm	l ₁ mm	l ₂ mm	f ₁ mm	f ₅ mm	d ₈ mm	b ₁ mm
20				15.203	10	2.0	8	-	-	-
25				19.006	13	2.5	10	-	-	-
32			Ε	24.007	16	3.2	20	10.0	4.0	7.05
40				30.007	20	4.0	20	10.0	4.6	8.05
50				38.009	25	5.0	26	12.5	6.0	10.54
63				48.010	32	6.3	26	12.5	7.5	12.54
80				60.012	40	8.0	26	16.0	8.5	16.04
100	Α	,		75.013	50	10.0	29	16.0	12.0	20.02
125				95.016	63	12.5	29	-	-	25.02
160				120.016	90	16.0	31	-	-	30.02

	HSK form B F										
Nominal Ø											
d ₁ mm					d ₂ mm	l ₁ mm	l ₂ mm	f ₁ mm	d ₈ mm	b ₁ mm	
25					-	-	-	-	-	-	
32					-	-	-	-	-	-	
40					24.007	16	3.2	20	4.0	10	
50					30.007	20	4.0	26	4.6	12	
63			F		38.009	25	5.0	26	6.0	16	
80	В	3			48.010	32	6.3	26	7.5	18	
100					60.012	40	8.0	29	8.5	20	
125					75.013	50	10.0	29	12.0	25	
160					95.016	63	12.5	31	12.0	32	

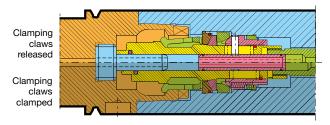
Because the rotational speed is the largest influencing factor together with the limits regarding the spindle or spindle bearing interface, the following r.p.m. limits for HSK interfaces have been recommended as guidelines within the HSK standards:

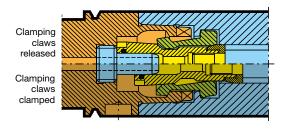
HSK-A/C 25	to 60.000 rev./min
HSK-A/C 32	to 50.000 rev./min
HSK-A/C 40	to 42.000 rev./min
HSK-A/C 50	to 30.000 rev./min
HSK-A/C 63	to 25.000 rev./min
HSK-A/C 80	to 20.000 rev./min
HSK-A/C 100	to 16.000 rev./min

213

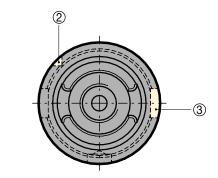

The automatic tool clamping

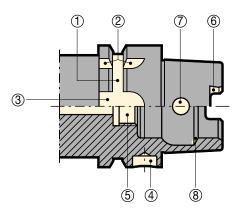
For the automatic interface the forces are introduced axially via a draw bar. A clamping taper simultaneously causes a radial movement of the clamping segments which, in turn, engage with the clamping shoulder of the tool shank and lock the coupling absolutely play-free. The clamping mechanism increases the draw-in force on the plane face by a factor of 3.5. General application in machining centers and turning centres using an automatic tool changing method. Such clamping systems are currently being offered by Messrs. Ott, Ortlieb, Berg and Röhm (fig. 6).


Fig. 6 Spindle interfaces with clamping devices


System ORTLIEB (licence Fa. Gühring)

System BERG (licence Fa. Gühring)




System Röнм (licence Fa. Gühring)

Term definitions of HSK-A interface for automatic tooling systems

- ① Gripper groove: circular groove
- 2 Index notch: sickle-shaped notch across gripper groove
- ③ Keyway on collar: index notch or for attachment in tool magazine or grippers. With HSK-B/D also provides form closed torque transmission to spindle
- 4 Coding/identification: bore in collar for attachment of identification system (coding chip)
- (5) Thread for coolant: for attachment of coolant supply set
- 6 Keyway on taper shank: form closed torque transmission to spindle
- Radial bore in taper shank: necessary for manual clamping systems
- ® Clamping shoulder: circular chamfer for drawing in the tool

Note

We like to point out, that HSK-A can be used alternatively to HSK-C with manual clamping systems e.g. 4-point clamping set or PowerClamp. The only difference is the overall length, which is slightly longer. That is why we have decided to have certain tool holders only as form C as standard.

The manual tool clamping

Operating instructions for manual tool clamping

- Do not exceed the maximum torque figures for the clamping screw of the 4-point clamping set and the PowerClamp system.
- The thread of the clamping screw of the manual clamping set is supplied pre-greased. Following pro-longed operating periods it may be necessary grease otherwise the require clamping force cannot be obtained.
- At tool changing the plane surface and spindle has to be cleaned. Dirt will restrain the perfect function of the tool system. The inner taper of the spindle can be cleaned with cleaning unit, article no. 4914.
- The spindle should be sealed with a plug, article no. 4985, when running without tool to prevent impurities in the clamping sets and HSK tool systems.

Exemplary interface design

Spindle connection dimensions see page 276/277

Detailed drawings of the spindle connection contours are available on request for the following:

Article no. 4385 Short HSK adaptor	Article no. 4554 PowerClamp clamping set	
Article no. 4386 HSK adaptor (in front)	Article no. 4958 4-point clamping set	
Article no. 4582 HSK adaptor (in front) for turning centres	Article no. 4930 MQL 4-point clamping set	
Article no. 4584 HSK adaptors (integrated axial plane)	Article no. 4953 Brass collar	<u>.</u>
Article no. 4586 HSK adaptor (in front)	Article no. 4953 Brass collar	<u></u>

Technical information and advantages

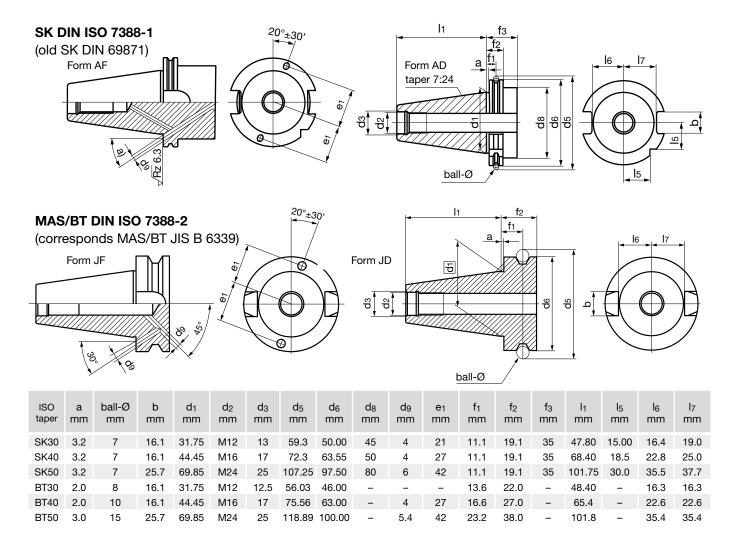
Gühring has considerably expanded its ISO taper and MAS-BT tool holder program. Naturally, the tool holders are of the usual high Gühring quality. This means: ISO taper and MAS-BT tool holders are produced in a special, alloyed case hardened steel with a minimum tensile strength at the core of 900 N/mm2, hardened in a low distortion hardening process to HRC 58 at a case hardening depth of 0.8 to 1.0 mm. For reasons of longevity, the surface of the tool holder is subjected to an abrasive blasting process and protected against corrosion.

Quality through precision

Gühring's demand for highest precision also applies to tool holders. Therefore, ISO taper and MAS-BT chucks are precision ground: in the vicinity of the ISO taper to Ra \leq 0.2, at the holder face to Ra \leq 0.4. The taper tolerance is better than AT 3 with a measuring accuracy of \leq 1 μ m.

Detailed information regarding the form and positional tolerances can be found for the individual tool holders on the respective pages in the catalogue. The tolerances of the holder bore and the spigot are approximately 2/3 of the DIN tolerance.

Balancing


Tool holders suitable for increased speeds are generally pre-balanced. For this purpose, we have determined the imbalance and entered the balancing areas as well as balancing bores on the drawings. This levels out the imbalance to a large extent and up to approximately 8000 rev./min precision balancing is unnecessary. For higher revolutions, the pre-balanced tool holders must be precision balanced to G 6.3 or G 2.5 respectively.

Type AD/AF

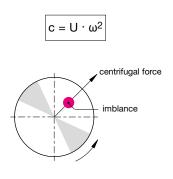
ISO taper tool holders generally produced are type AD/AF. Supplied is type AD, the coolant bores at the collar are sealed with screws.

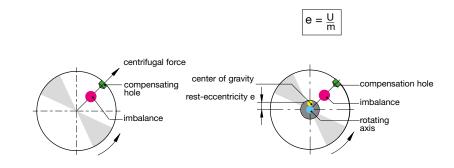
General dimensions and tolerances

The following dimensions apply to our ISO taper and MAS-BT tool holders:

Imbalance

An imbalance produces a centrifugal force during the rotation of the spindle impeding the smooth running of the tool. This imbalance influences the working process and the life span of the spindle bearings.

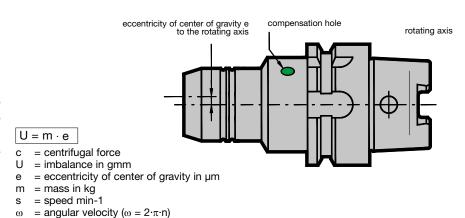

The centrifugal force F increases linear with the imbalance U and squared with the number of revolutions according to the formula below.


Counter balancing

To compensate for unwanted centrifugal forces, the symmetrical distribution of mass must be restored with the aim of eliminating any centrifugal forces influencing the spindle bearing. Tool holders generally have compensation holes or areas which assist in directing the total amount of all centrifugal forces influencing the axis towards zero (see DIN ISO 21940-11).

Eccentricity of center of gravity

The imbalance of a spindle causes its center of gravity to deviate a certain distance from the rotating axis in direction of the imbalance. This distance is called rest-eccentricity e or eccentricity of center of gravity. The heavier the weight of the balance body mass m, the greater the rest-imbalance U permissible.



Calculation imbalance

Imbalance is a measure, specifying how much unsymmetrical distributed ass deviates radially from the rotating axis.

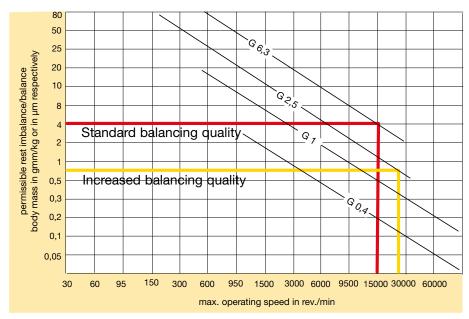
Imbalance is measured in gmm. The measure of distance e determines the distance of the center of gravity of an element to the rotating axis. Imbalance is calculated as follows:

Balancing limits

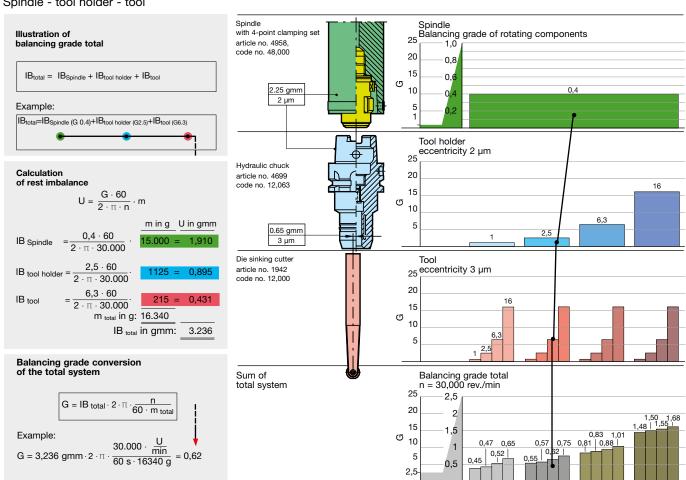
In accordance with DIN ISO 21940-11 the balance grade is denoted with G as well as the units gmm/kg or μ m respectively and is relative to the number of revolutions. At a speed of 15.000 rev./min and a weight of 1 kg, G6.3 corresponds with a permissible center deviation between rotational axis and center of gravity axis of the spindle of 4 μ m.

At twice the speed of 30,000 rev./min it would be 2 μ m. If the tool holder was only half the weight, i.e. 0.5 kg, the permissible counter balancing tolerance is also halved.

Aim of counter balancing is to find a compromise between the technically feasible and the ecconomically efficient. Because the radial interchange accuracy for a brand-new HSK holder can be 2 to 3 μ m and for an ISO taper shank holder


can be 5 to 10 μ m, it means an initial quality limit of G2.5 or G6.3 respectively at 10,000 rev./min.

The following diagram shows the quality grades to DIN ISO 21940-11, i.e. the permissible rest imbalance in relation to the balance body mass for different counter balance qualities G relative to the maximum operating speed.



Gühring tool holders are balanced to G6.3/15,000 rev./min. As an option, i.e. when specified by the machine tool manufacturer, it is possible to precision balance including balancing protocol to a rest imbalance of 0.3 gmm.

Calculation the balancing grade total of the assembled system:

Spindle - tool holder - tool

Technical information and advantages

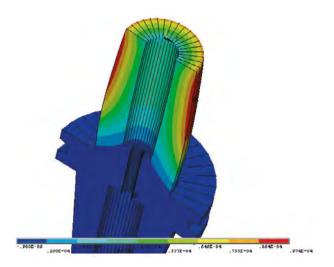
Gühring's shrink fit chucks ensure an optimal connection between shrink fit chuck and shank tool.

While some manufacturers use conventional case hardened steel, Gühring applies a special, application orientated tool steel. The result is an increased expansion rate as well as improved temperature adaptability. There is no limit to the number of shrink fit insertion or withdrawal operations.

Advantages:

- · short shrink fit times
- maximum clamping force
- shrink fit chucks available for tool shank diameters from 3 mm to 32 mm
- longevity

These advantages are of particular interest in the field of HSC milling, difficult and rough cutting operations, drilling, reaming and internal grinding operations as well as for woodworking.


Convincing characteristics:

- · excellent concentricity
- · extreme clamping force and rigidity
- improved tool life
- insignificant imbalance through rotation symmetry
- · economic efficiency

A gripping principle

When shrink fitting tools in shrink fit chucks, the decisive factors for ensuring the safe clamping of the tool in the tool holder are solely the heating and cooling of the tool holder. The heating process expands the shrink fit chuck enabling a tool to be inserted or withdrawn respectively. During the cooling process it contracts again and clamps the inserted tool with maximum clamping force.

Because the shrink fit chucks can become extremely hot in localised areas during the heating process and the tools shrink fitted for insertion or withdrawal respectively possess very sharp cutting edges, it is paramount that the operator wears Kevlar gloves during the shrink fit operation to prevent burns and cuts to the hands.

Shrink fit extensions: Increase performance

Shrink fit extensions increase the scope of a tool's performance and reduce tool surface imperfections. As with shrink fit chucks, the tool is clamped in the shrink fit extension and ideally in an hydraulic chuck. Naturally, shrink fit extensions can also be clamped in shrink fit chucks.

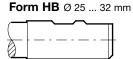
Perfect team: Gühring shrink fit chucks and shrink fit systems

For the shrink fitting for withdrawal and insertion of tools in our shrink fit chucks we offer various shrink fit systems to satisfy individual customer requirements: From high-tech solutions with integrated, highly accurate length pre-setting and special shrink fit systems for extra long tools to the multifaceted GSS 2000 with various equipment options:

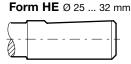
- GSS 5000
- GSS 3001
- HSV 2000

• GSS 2000

Technical information and advantages


Clamping standard tool shanks to DIN 6535 in hydraulic chucks

Direct clamping of tool preferred run-out ≤ 0.003 mm Form HA Ø 6 ... 20 mm


Form HA Ø 25 ... 32 mm

Form HB Ø 6 ... 20 mm

Clamping of tool shank only with reduction bushes run-out ≤ 0.005 mm

General notes:

Our hydraulic chucks must not be operated with motor-driven tools (impulse screwdrivers or similar). The hexagonal key should not exceed the key size over its entire length, this largely prevents excessive torque being transferred. We recommend the hexagon clamping key, article no. 4912. A tightening moment of 10 Nm must not be exceeded.

Gühring Hydraulic chucks with increased clamping force

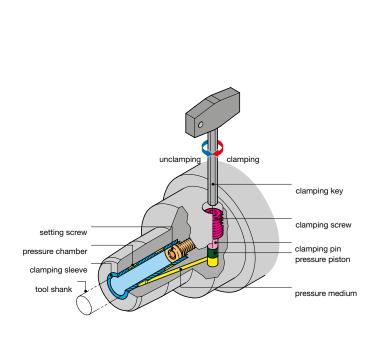
Hydraulic chucks are suitable for clamping rotary symmetrical tools or workpieces. Straight shank tools without drive flats may be clamped up to Ø 32 mm, but also shanks according to DIN 6535 form HA and HB up to Ø 20 mm without reduction bushes. The given values in the table below are not to be exceeded. If the inserted length is less than the given minimum insertion depth or other tool shanks than specified above are applied, lower accuracy and breakage may occur!

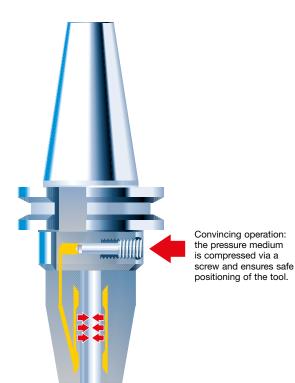
Above all it is the high revolutions with High-Speed-Cutting operations that puts special demands on the tool holder. The clamping of the tool in a hydraulic chuck is, therefore, especially significant. Gühring has developed a hydraulic chuck that offers reliable and powerful clamping with higher torque figures, guaranteeing excellent tool clamping in the tool holder.

Combined with precise concentricity (max. 3 µm deviation from concentricity), a very fast and simple tool change as well as the vibration cushioning effect of the pressure chamber, the new hydraulic chuck can tackle the most demanding of machining tasks. The result is optimal tool life and excellent surface qualities or dimensional accuracy of the workpiece respectively.

Considerably higher: The clamping force of Gühring's new HSK-A hydraulic chuck in comparison to conventional chucks.

Technical information and advantages

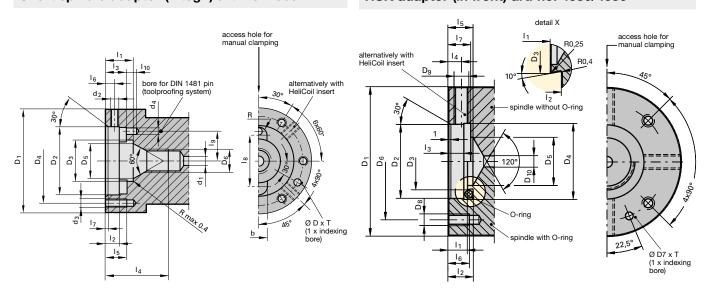

Modern machining processes place heavy demands on tool holding. Hydraulic chucks provide excellent clamping characteristics combined with precise concentricity.


Furthermore, they enable a simple and fast tool change, with the assistance of a special extraction key.

Turning the pressure screw generates sufficient pressure in the pressure chamber resulting in an elastic deformation of the clamping bush, providing powerful tool clamping and precise concentricity. A safe and powerful fit is guaranteed. If reduction bushes are applied that are able to hold varying tool diameters, the tool application may be extended without problem. If such bushes are not applied, it is essential to observe the minimum clamping length!

A summary of the advantages:

- precise tool clamping with a maximum 3 µm deviation from concentricity
- transmission of high torque through (excellent clamping) optimised bush clamping system
- high speed compatibility (no centrifugal forces from clamping segments)
- precise concentricity, therefore excellent surface qualities and dimensional accuracy of the workpiece
- rapid tool change thanks to simple operation of the clamping screw
- · optimal tool life
- hydraulic cushioning has vibration absorbing effect


for shank-Ø in mm	max. r.p.m. in 1/min	max. transferable torque in Nm	min. insertion depth in mm	max. adjustment l ₃ mm	max. rad. force F on chuck with 50 mm from the nose in N	operating temperature in °C	max. coolant pressure in bar
3 h ⁶	50 000	2.5	27	7	25	20 - 50	80
4 h6	50 000	6	27	7	40	20 - 50	80
5 h6	50 000	10	27	7	65	20 - 50	80
6 h6	50 000	16	27	10	225	20 - 50	80
8 h6	50 000	26	27	10	370	20 - 50	80
10 h ⁶	50 000	50	31	10	540	20 - 50	80
12 h ⁶	50 000	82	36	10	650	20 - 50	80
14 h ⁶	50 000	125	36	10	900	20 - 50	80
16 h6	50 000	190	39	10	1410	20 - 50	80
18 h ⁶	50 000	275	39	10	1580	20 - 50	80
20 h ⁶	50 000	310	41	10	1860	20 - 50	80
25 h ⁶	25 000	520	47	10	4400	20 - 50	80
32 h ⁶	25 000	770	51	10	6500	20 - 50	80

Detailed production drawing on request

Short spindle adaptor (integr.) art. no. 4385

HSK adaptor (in front) art. no. 4386/4586

Short spindle adaptor (integr.) art. no. 4385

for HSK/Code no.	D1	D2	D3	D4	D5	D6	d ₁	d ₂	d ₃	d ₄
32 24,000	40	27.0	16.7	32.0	12.5	M 10	4.0	М 3	М 3	2
40 30,000	50	33.5	20.6	40.5	16.0	M 12	5.0	M 4	M 4	3
50 38,000	63	42.0	25.5	52.0	20.0	M 16	6.0	M 5	M 5	4
63 48,000	80	55.0	33.0	66.0	25.0	M 20	8.0	M 6	M 6	4
80 60,000	100	68.0	41.0	82.0	32.0	M 24	10.2	M 8	M 8	5

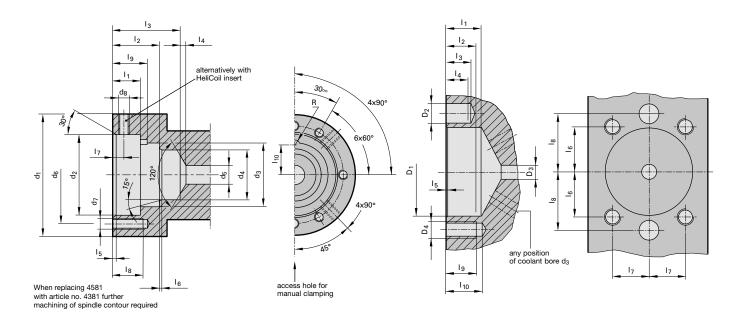
Short spindle adaptor (integr.) art. no. 4385 continuation

for HSK/Code no.	clamping depth I ₁	l ₂	l ₃	l ₄	l ₅	l ₆	l ₇	l ₈	lg	l ₁₀	b	R	D	Т	locating pin DIN 1481
32 24,000	9.0	4.0	6.5	22	10	2.5	0.6	20.5	11.5	3.5	7.0	3.0	3.5	3.0	2 x 6
40 30,000	12.0	5.5	8.7	30	11	3.5	0.6	25.0	14.5	5.0	8.0	4.0	4.0	3.5	3 x 8
50 38,000	16.0	8.0	12.0	36	12	5.0	0.8	31.5	18.3	6.0	10.5	5.0	4.0	3.5	4 x 10
63 48,000	20.0	10.0	15.0	48	15	6.0	1.0	41.0	22.5	5.0	12.5	6.0	4.0	3.5	4 x 10
80 60,000	25.6	13.0	19.3	60	14	7.5	1.0	50.0	28.0	6.0	16.0	7.5	5.0	4.5	5 x 12

HSK adaptor (in front) art. no. 4386

for HSK/Code no.	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	l ₁	l ₂	lз	l ₄	l ₅	l ₆	l ₇	Т	0- ring
25 19,000	45	23	16.5	24	_	35	_	M5	M5	3.2	8.2	9.5	6.2	4.5	_	14	9	_	16x2
32 24,000	60	30	23.5	31	-	44	5	M5	M8x1	4.0	10.3	12.4	8.3	7.0	-	11	12	3.5	23x3
40 30,000	70	35	28.5	36	22	53	5	M6	M8x1	5.0	10.3	12.4	8.3	7.0	12	14	12	3.5	28x3
50 38,000	80	40	30.5	41	26	63	5	M6	M8x1	6.0	10.3	13.3	8.3	7.0	12	14	12	3.5	30x4
63 48,000	100	50	38.5	51	34	79	5	M8	M10x1	8.0	12.3	16.1	10.3	8.0	15	15	14	3.5	38x5
80 60,000	117	60	47.5	61	38	96	6	M8	M10x1	10.2	12.3	16.1	10.3	8.0	20	15	14	4.5	47x5

HSK adaptor (in front) art. no. 4586


more adaptor (ii	•	,	.000																
for HSK/Code no.	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	l ₁	l ₂	l ₃	l ₄	l ₅	l ₆	l ₇	Т	0- ring
40 30,000	70	35	28.5	36	22	53	5	M6	M8x1	5.0	10.3	12.4	8.3	7.0	12	14	12	3.5	28x3
50 38,000	80	40	30.5	41	26	63	5	M6	M8x1	6.0	10.3	13.3	8.3	7.0	12	14	12	3.5	30x4
63 48,000	100	50	38.5	51	34	79	5	M8	M10x1	8.0	12.3	16.1	10.3	8.0	15	15	14	3.5	38x5
80 60,000	117	60	47.5	61	38	96	6	M8	M10x1	10.2	12.3	16.1	10.3	8.0	20	15	14	4.5	47x5
100 75,000	140	80	65.0	81	53	119	6	M10	M10x1	12.0	12.3	16.1	10.3	8.0	20	18	14	4.5	45x5

Detailed production drawing on request

HSK adaptor (in front) art. no. 4581/4584

HSK adaptor (in front) art. no. 4582

HSK adaptor (in front) art. no. 4581

for																
HSK/Code no.	d ₁	d ₂	d ₃	d ₄	d ₅	d ₆	d ₇	d ₈	l ₁	l ₂	l3	l 4	l ₅	l ₆	l ₇	l ₈
25 19,000	45	23	-	-	5	35	M5	M4	6.8	-	-	1.5	1	-	3.5	min.8
32 24,000	55	28	21.12	17	6.4	43.5	M6	M4	6	9.75	16.75	2	1	0.6	3.5	11
40 30,000	63	36	26.4	21	8	51.5	M6	M4	7	11.3	19.9	2.5	1	1	4	12
50 38,000	80	46	33	26	10	65	M8	M5	9	14.7	25.5	3	1.5	1	5	12
63 48,000	100	56	42.5	34	16	81.5	M10	M6	12	17.8	30	3.5	1.5	1	6	16
80 60,000	125	66	52.8	42	16	103	M12	M8	14	22.7	39.8	4	2	1.5	8	16
100 75,000	160	86	66	53	20	130	M16	M10	16	27.4	49	4.5	2	2	10	16

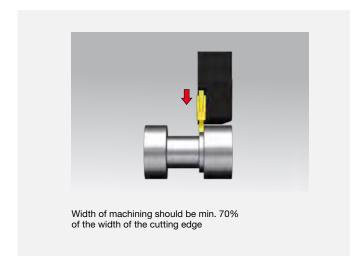
HSK adaptor (in front) art. no. 4584

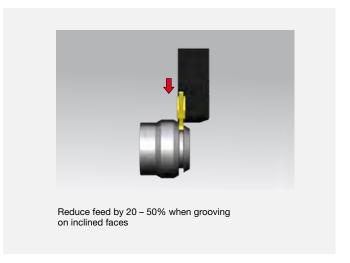
		-,		•															
for HSK/Code no.	d ₁	d ₂	d ₃	d ₄	d ₅	d ₆	d ₇	d ₈	l ₁	l ₂	l ₃	I ₄	I ₅	I ₆	l ₇	l ₈	l ₉	I ₁₀	R
32 24,000	40	27.0	21.12	17	6.4	32.0	М3	M 4	8.8	14.80	21.75	2.0	1.0	0.6	3.5	10.0	11.9	10.10	2.0
40 30,000	50	33.5	26.40	21	8.0	40.5	M 4	M 4	11.0	18.85	27.40	2.5	1.0	1.0	4.0	12.0	13.9	12.40	2.0
50 38,000	63	42.0	33.00	26	10.0	52.0	M 5	M 5	15.0	24.75	35.50	3.0	1.5	1.0	5.0	12.0	18.4	15.50	2.5
63 48,000	80	55.0	42.50	34	16.0	66.0	M 6	M 6	17.9	30.35	42.50	3.5	1.5	1.0	6.0	16.0	23.9	20.00	3.0
80 60,000	100	68.0	52.80	42	16.0	82.0	M 8	M 8	24.3	40.25	57.30	4.0	2.0	1.5	8.0	16.0	32.9	24.80	3.5
100 75,000	125	88.0	66.00	53	20.0	106.0	M10	M10	34.4	54.45	76.00	4.5	1.5	2.0	10.0	16.0	42.4	31.40	4.5

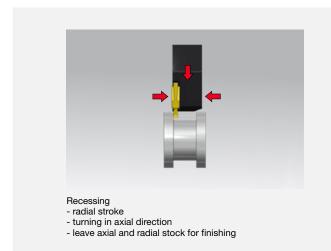
HSK adaptor (in front) art. no. 4582

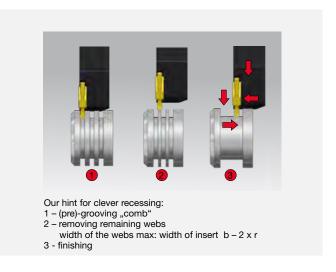
for HSK/Code no.	d ₁	d ₂	d ₃	d ₄	I ₁	l ₂	l ₃	I ₄	l ₅	l ₆	l ₇	l ₈	lg	I ₁₀
50 38,000	50	7.95	10	M10	20.55	20	15	11	1	27.44	19.22	33.5	20	25
63 48,000	63	14.00	10	M12	25.00	21	18	16	1	31.70	26.00	41.0	22	26

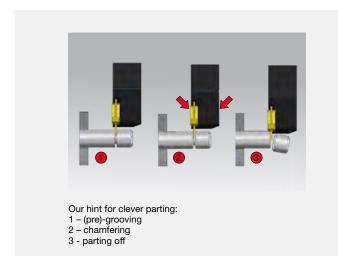
Grooving tools

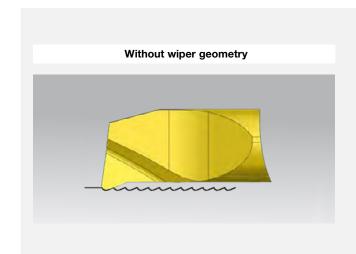

Page

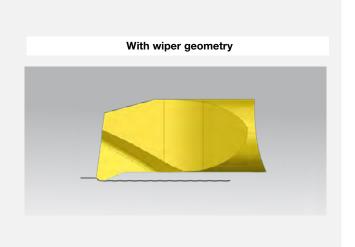

220	Dasies
<u>228</u>	Application hints for the cutting insert GJ104/106/108
<u>229</u>	System 104/106/108/110
<u>230</u>	System GG104/GG106/GG108
<u>234</u>	Application hints for holder GH305EST
<u>235</u>	Conversion Table Inch-Millimeter
<u>236</u>	Conversion Table TPI-Millimeter


237 Application examples




General machining tips


General application hints


		Solu	tion										
Subj	ect	Feed	Feed at centre	Cutting speed	RH/LH edge orientation	Corner radius	Wiper	Width of groove	Tool clamping	Workpiece clamping	Tool overhang	Centre height of cutting edge	Coolant
	Edge chipping	1	1			1			Q	Q	Q	Q	
to wear	Build up edge			1									3
Related to wear	Flank wear	Q	む	1		1						Q	凸
	Plastic deformation	む	む	1		1							
+	Vibrations	む		仚		仚		1	Q	Q	₽	Q	
mponen	Burrs		1		3	1						Q	凸
Related to the component	Surface	1	む	仓		仓	5	仓	Q	Q	₽	Q	
Related t	Long chips (no chip breakage)	1		仓									
"	(too) short chips, compressed chips	1											

decrease values (large impact)
increase values (large impact)
decrease values (low impact)
increase values (low impact)
check
apply

Application hints for the cutting insert GJ104/106/108 with wiper geometry

The wiper geometry offers multiple options

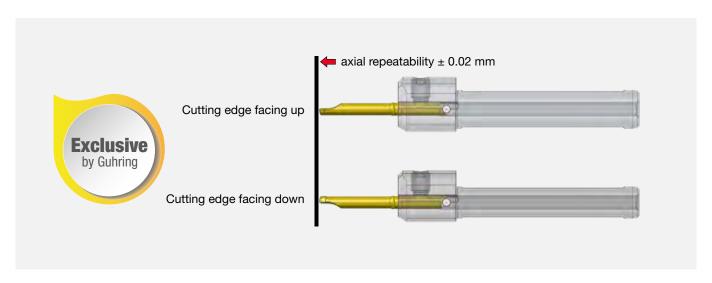
- You retain the feed rate of the cutting insert without wiper geometry and achieve a considerably better surface finish.
- You increase the feed rate taking the entire process (material, chip formation, stability) into consideration and achieve the following improvements:
- reduced machining time
- therefore reduced engagement of the tool, improving tool life
- improved chip formation/chip breakage
- thicker chip enables better heat dissipation

Please note the following carefully!

The cutting insert/holder must be positioned axially parallel to optimize the wiper.

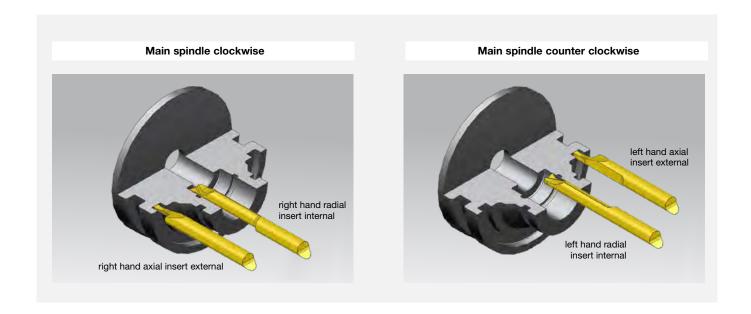
This is the only way the wiper geometry can achieve its desired effect to improve the surface finish.

General formulas to determine the surface finish quality


$R_{th} = f^2 / 8 \cdot r$ $r = f^2 / 8 \cdot R_{th}$ $f = \sqrt{8 \cdot r \cdot R_{th}}$

Application example

Application: B	oring out Ø 4 mm	Tool selection	on	Customer benefit
Component:	Sleeve	System:	104	Rz 5-8 um was achieved with a cutting insert
Material:	42CrMo4	Holder:	GB104.0016.075.00.15.N.IK	without wiper. With a wiper cutting insert Rz values could be
	1.7225	Insert:	GJ104.2337.020.17.40.R	improved to 2-4 um.
Machine:	Spinner		TiAln nanoA	In the 2nd step vc was increased to 130 m/min. This resulted in a further surface
Cooling:	20 bar			finish improvement.
Operat. step:	Finishing			
vc:	90 m/min			
f:	0.08 mm			
ар:	0.15			7
Groov. depth:	-			



System 104/106/108/110 Positioning and clamping

Guhring's system 104/106/108/110 is unique in terms of insert positioning and clamping: The position between cutting edge facing up and cutting edge facing down can be changed by keeping the same length position without loosening the holder.

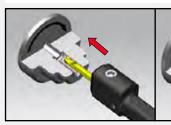
Definition of the cutting edge position

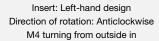
Internal threading System GG104/GG106/GG108

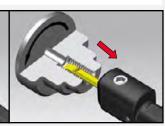
		Recommended number of cuts with internal threading									
Pito	:h/P	Steel mater	ials (tensile strengt	h in N/mm²)	Stainless steel	Cast iron	Heat-resistant	Aluminium			
mm	Gg/"	400-700	700-1150	> 1150	Stairliess steel	Cast iron	alloys	Aluminium			
0.3		3	4	5	5	3	5	3			
0.5	48	5	6	8	8	5	8	5			
0.8	32	7	8	9	9	7	9	7			
1	24	8	9	10	10	8	10	8			
1.25	19	10	11	12	12	10	12	10			
1.5	16	12	13	15	15	12	15	12			
1.75	14	14	15	18	18	14	18	14			
2	11	16	17	20	20	16	20	16			
3	8	22	24	30	30	22	30	22			

Feed direction internal threading

Right-hand thread

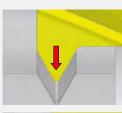



Insert: Right-hand design Direction of rotation: Clockwise M3 turning from outside in



Insert: Left-hand design
Direction of rotation: Anticlockwise
M4 turning from inside out

Left-hand thread



Insert: Right-hand design
Direction of rotation: Clockwise
M3 turning from inside out

Feed process

Radial feed

- Both cutting edges engaged at the same time
- High cutting pressure and thermal load
- Especially suitable for the machining of short-chipping materials
- For the production of threads with a small pitch and small thread depth as well as multiple start depths to prevent pitch errors

One-sided flank in-feed

- Only one cutting edge engaged
- Lower cutting pressure and thermal load
- Especially suitable for the machining of long-chipping materials
- Achieving a higher surface finish quality at the respective thread flank

Reciprocal flank in-feed

- Both cutting edges alternately engaged
- Lower cutting pressure and thermal load
- Especially suitable for the machining of long-chipping materials
- Achieving a higher surface finish quality at the flanks

Internal threading System GG104/GG106/GG108

Pre-drill-diamet	Pre-drill-diameters for metrical threads									
Regular pitch th	nread		Fine pitch threa	d						
Nominal-Ø	Pitch	Pre-drill-Ø* full profile mm	Pre-drill-Ø partial profile mm	Nominal-Ø	Pitch	Tapp. size hole Ø partial profile mm				
M 2	0.40	1.50	1.60	M 2	0.20	1.80				
M 2.5	0.45	1.85	2.05	M 2.5	0.35	2.15				
М 3	0.50	2.40	2.50	M 3	0.35	2.65				
M 4	0.7	3.10	3.30	M 3.5	0.35	3.15				
M 4.5	0.75		3.75	M 4	0.50	3.50				
M 5	0.80	4.00	4.20	M 4.5	0.50	4.00				
M 6	1.00		5.00	M 5	0.50	4.50				
M 8	1.25		6.80	M 5.5	0.50	5.00				
M 10	1.5		8.5	M 6	0.75	5.25				
M 12	1.75		10.25							

^{*}max. allowance (ap) in core diameter = 0.2 mm

Application example

Application: Internal thread		Tool selection	n	Customer benefit
Component:	Threaded sleeve	System:	106	Guhring's cutting insert leads to considerably
Material:	TiAl 6 V 4	Holder:	GB106.0016.090.00.22.N.IK	less manual re-working. The customer saves time and money.
	3.7165	Insert:	GG106.TM08.125.22.68.R	
Machine:	Mazak Nexus 200			
Cooling:	12 bar			
Operat.step:	Threading			
vc:	25 m/min			
f:	Pitch			
ар:				
Groov. depth:				

Broaching System GN104 and GN106

General hints

Please align the tool accurately.

The alignment surface on the tool holder GB104/106 is a great help.

Application instructions

- With blind holes a run-out groove / undercut or cross hole must be at the groove end to allow chip evacuation
- As a general rule the delivery of coolant (soluble or neat oil) helps the broaching process. It allows chips to be flushed out of the hole as well as increasing the surface finish quality of the slot and tool life.
- On the return stroke the tool must travel completely out of the slot.
- Pay attention to the feed Ø when programming the first stroke (load on the cutting corners).

Calculating the feed diameter Ø d1 for the first stroke

Example: Hole-Ø: 8 mm

Groove width: 5 mm

Safety distance between cutting corners and workpiece-Ø: 0,15 mm

r = radius workpiece (hole-Ø 8/2) = 4 b = Cutting edge / 2 (5/2) = 2,5

Feed radius = $\sqrt{r^2 - b^2}$ - safety distance

Feed radius = $\sqrt{4^2 - 2.5^2} - 0.15 = 2.97$

Feed diameter Ø d1 = 2.97 x 2 = Ø 5.94

The feed diameter for the first stroke in the machining example above is Ø 5.94

Feed and feed rate

- The feed per stroke is dependent on the tensile strength of the material to be machined.
- The feed rate when broaching corresponds to the cutting speed and is controlled by the Z-axis of the machine.
- Achievable speeds are partly limited by the machine conditions.

Tensile strength (N/mm²)						
	300	400	600	800	1000	1200
Feed rate (mm/min)	10000	8000	7000	6000	5000	4000
Feed per stroke (mm)	0.1	0.08	0.07	0.06	0.05	0.04

^{*} Values are for guidance only. The machine condition, rigidity of component clamping as well as the workpiece material influence the cutting parameters.

Broaching System GN104 and GN106

Sequence of machining

Broaching square profile:

- The broaching inserts generate a 90° corner
- The component must be repositioned 4 times each 90° to complete the square profile

Broaching hexagon profile:

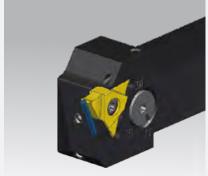
- The broaching inserts generate a 60° corner
- The component must be repositioned 6 times each 60° to complete the hexagon profile

Broaching Torx profile:

- The broaching inserts generate one section of the torx profile
- The component must be repositioned 6 times each 60° to complete the torx profile

Application example

Application: Hexagon broaching		Tool selection	า	Customer benefit	
Component:	Sleeve	System:	106 Special tool	The current process required a high amount of	
Material:	X 10 CrNiS 18 9	Holder:	GB106.0025.075.00.22.S.IK	manual rework. Also the tool life was low. With the Guhring tool the customer achieves a very	
	1.4305	Insert:	Special insert	good surface with high tool life. Also there is	
Machine:	Spinner TC 65		TiAIN nanoA	no more manual rework required.	
Cooling:	20 bar				
Operat. step:	Semifinishing & fnishing				
vc:	-				
f:	3200 mm				
ар:	0,06				
Groov. depth:	SW 9.3 (special)				



Application hints for holder GH305...EST with adjustable coolant supply

The adjustable valve directs the coolant to the cutting edge as follows:

Coolant supply directed to the rake face

Coolant supply directed to the clearance face

Coolant supply directed to both spots

The GH305 . . . EST is Guhring's patent pending grooving holder with internal coolant.

What makes it worth the effort?

- You can optimally provide your process with coolant even at low coolant pressure:
 - first choice is the coolant supply to the rake face
 - if chips interfere or prevent coolant delivery, the temperature can be effectively controlled by cooling the clearance face.
- With high coolant pressure we recommend cooling from both coolant holes:
 - cooling the rake face can positively influence chip fracture
 - clerance face coolant additionally maintains the temperature of the cutting edge

Application example

Application: Ex	xternal grooving radial	Tool selection	1	Customer benefit
Component:	Piston	System:	305	Guhring's precision ground insert offers
Material:	17 CrNiM0 6	Holder:	GH305.2020.125.00.04.R.IK.EST	more tool life than the just sintered pro- duct of the competitor. Additionally the
	1.6587	Insert:	GE305.0200.020.BA.04.N	customer reported better chip formation
Machine:	Mazak Quick Turn Smart 200			as well as improved surface quality.
Cooling:	20 bar			
Operat. step:	groov. 58 HRC, 0.8mm case d.			
vc:	40 m/min			
f:	0.06 mm			
ар:				
Groov. depth:	3 mm			

Conversion Table Inch-Millimeter from 1/64 to 11 63/64

Size (Inch)	mm	Part of Inch (decimal))	Size (Inch)	mm	Part of Inch (decimal))	Size (Inch)	mm	Part of Inch (decimal))	Size (Inch)	mm	Part of Inch (decimal))
-	0.10	0.0039	51	1.70	0.0670	4	5.31	0.2090	-	14.00	0.5512
97	0.15	0.0059		1.75	0.0689	3	5.41	0.213	9/16	14.29	0.5625
96	0.16	0.0063	50	1.78	0.0700		5.50	0.2165		14.50	0.5709
95	0.17	0.0067		1.80	0.0709	7/32	5.56	0.2188	37/64	14.68	0.5781
94	0.18	0.0071	49	1.85	0.0730	2	5.61	0.221	-	15.00	0.5906
93	0.19	0.0075	40	1.90	0.0748	1	5.79	0.228	19/32	15.08	0.5938
92	0.20	0.0079	48	1.93 1.95	0.0760 0.0768	A 15/64	5.94 5.95	0.234 0.2344	39/64	15.48 15.50	0.6094
91 90	0.21 0.22	0.0083 0.0087	5/64	1.98	0.0766	15/64	6.00	0.2344	5/8	15.88	0.6102 0.625
89	0.22	0.0087	47	1.99	0.0781	В	6.05	0.2362	5/6	16.00	0.6299
88	0.23	0.0091	-	2.00	0.0787	C	6.15	0.242	41/64	16.27	0.6406
-	0.25	0.0098		2.05	0.0807	D	6.25	0.246	1.,,	16.50	0.6496
87	0.25	0.0100	46	2.06	0.0810	1/4	6.35	0.25	21/32	16.67	0.6562
	0.26	0.0102	45	2.08	0.0820	E	6.35	0.25	-	17.00	0.6693
86	0.27	0.0105		2.15	0.0846		6.50	0.2559	43/64	17.07	0.6719
	0.27	0.0106	44	2.18	0.0860	F	6.53	0.257	11/16	17.46	0.6875
85	0.28	0.0110	43	2.26	0.0890	G	6.63	0.261		17.50	0.689
	0.29	0.0114	42	2.37	0.0935	17/64	6.75	0.2656	45/64	17.86	0.7031
84	0.29	0.0115	3/32	2.38	0.0938		6.75	0.2657	-	18.00	0.7087
-	0.30	0.0118	41	2.44	0.0960	Н	6.76	0.266	23/32	18.26	0.7188
83	0.30	0.0120	40	2.50	0.0980	I	6.91	0.272		18.50	0.7283
82	0.32	0.0125	39	2.53	0.0995	-	7.00	0.2756	47/64	18.65	0.7344
	0.32	0.0126	38	2.58	0.1015	J	7.04	0.2772	-	19.00	0.748
81	0.33	0.0130	37	2.64	0.1040	K	7.14	0.281	3/4	19.05	0.75
80	0.34	0.0135	36	2.71	0.1065	9/32	7.14	0.2812	49/64	19.45	0.7656
79 1/64	0.37	0.0145	7/64 35	2.78 2.79	0.1094 0.11	L M	7.37 7.49	0.29 0.2949	25/32	19.50 19.84	0.7677 0.7812
78	0.40 0.41	0.0156 0.0160	34	2.79	0.11	IVI	7.49	0.2949	23/32	20.00	0.7874
77	0.41	0.0180	33	2.87	0.113	19/64	7.54	0.2969	51/64	20.00	0.7969
-	0.50	0.0197	00	2.90	0.1142	N	7.67	0.3020	31/04	20.50	0.8071
76	0.51	0.0200	32	2.95	0.116		7.75	0.3051	13/16	20.64	0.8125
75	0.53	0.0210	-	3.00	0.1181	5/16	7.94	0.3125	-	21.00	0.8268
74	0.57	0.0225	31	3.05	0.12	-	8.00	0.315	53/64	21.03	0.8281
-	0.60	0.0236	1/8	3.18	0.125	0	8.03	0.316	27/32	21.43	0.8438
73	0.61	0.0240	30	3.26	0.1285	Р	8.20	0.323		21.50	0.8465
72	0.64	0.0250		3.30	0.1299	21/64	8.33	0.3281	55/64	21.84	0.8594
71	0.66	0.0260	29	3.45	0.136	Q	8.43	0.332	-	22.00	0.8661
-	0.70	0.0276		3.50	0.1378		8.50	0.3346	7/8	22.23	0.875
70	0.71	0.0280	28	3.57	0.1405	R	8.61	0.339		22.50	0.8858
69	0.74	0.0292	9/64	3.57	0.1406	11/32	8.73	0.3438	57/64	22.62	0.8906
-	0.75	0.0295	27	3.66	0.144		8.75	0.3445	-	23.00	0.9055
68	0.79	0.0310	26	3.73	0.147	S	8.84	0.348	29/32	23.02	0.9062
1/32	0.79	0.0313	25	3.75 3.80	0.1476 0.1495	- T	9.00 9.09	0.3543 0.358	59/64	23.42 23.50	0.9219 0.9252
- 67	0.80 0.81	0.0315 0.0320	23	3.86	0.1493	23/64	9.09	0.3594	15/16	23.81	0.9252
66	0.84	0.0320	23	3.91	0.154	U	9.35	0.368	-	24.00	0.9449
65	0.89	0.0350	5/32	3.97	0.1562		9.50	0.374	61/64	24.21	0.9531
-	0.90	0.0354	22	3.99	0.157	3/8	9.53	0.375	0.,01	24.50	0.9646
64	0.91	0.0360	-	4.00	0.1575	V	9.56	0.377	31/32	24.61	0.9688
63	0.94	0.0370	21	4.04	0.159	w	9.80	0.386	-	25.00	0.9843
62	0.97	0.0380	20	4.09	0.161	25/64	9.92	0.3906	63/64	25.00	0.9844
61	0.99	0.0390		4.20	0.1654	-	10.00	0.3937	1	25.40	1.00
-	1.00	0.0394	19	4.22	0.166	X	10.08	0.397			
60	1.02	0.0400	18	4.31	0.1695	Y	10.26	0.4040			
59	1.04	0.0410	11/64	4.37	0.1719	13/32	10.32	0.4062			
58	1.07	0.0420	17	4.39	0.173	Z	10.49	0.413			
57	1.09	0.0430	16	4.50	0.177		10.50	0.4134			
56	1.18	0.0465	15	4.57	0.18	27/64	10.72	0.4219			
3/64	1.19	0.0469	14	4.62	0.182		11.00	0.4331			
	1.20	0.0472	13	4.70	0.185	7/16	11.11	0.4375			
	1.25	0.0492	3/16	4.76	0.1875	00/04	11.50	0.4528			
55	1.30	0.0512	12	4.80	0.189	29/64	11.51	0.4531			
55 54	1.32	0.0520	11	4.85 4.91	0.191 0.1935	15/32	11.91 12.00	0.4688 0.4724			
54	1.40 1.45	0.0550 0.0571	9	4.91	0.1935	31/64	12.00	0.4724			
	1.45	0.0571	_	5.00	0.196	31/04	12.50	0.4844			
53	1.51	0.0595	8	5.05	0.1908	1/2	12.70	0.4921			
55	1.55	0.0595	7	5.11	0.199	-	13.00	0.5118			
1/16	1.59	0.0625	13/64	5.16	0.2010	33/64	13.10	0.5116			
	1.60	0.0630	6	5.18	0.2040	17/32	13.49	0.5312			
52	1.61	0.0635	5	5.22	0.2055		13.50	0.5315			
	1.65	0.0650	1	5.25	0.2067	35/64	13.89	0.5469			

Conversion Table TPI-Millimeter

Number of pitches per	pitch	pitch	Number of pitches per	pitch	pitch	Number of pitches per	pitch	pitch	Number of pitches per	pitch	pitch
inch	inch	mm	inch	inch	mm	inch	inch	mm	inch	inch	mm
127	0,00787	0,200	44	0,02273	0,577	20	0,05000	1,270	7	0,14286	3,629
120	0,00833	0,212	42,33	0,02362	0,600	19	0,05263	1,337	6,35	0,15748	4,000
112	0,00893	0,227	40	0,02500	0,635	18	0,05556	1,411	6	0,16667	4,233
101,6	0,00984	0,250	36,29	0,02756	0,700	16,93	0,05907	1,500	5,64	0,17730	4,504
100	0,01000	0,254	36	0,02778	0,706	16	0,06250	1,588	5,08	0,19685	5,000
96	0,01042	0,265	34	0,02941	0,747	14,51	0,06892	1,751	5	0,20000	5,080
90	0,01111	0,282	33,87	0,02952	0,750	14	0,07143	1,814	4,62	0,21645	5,498
84,67	0,01181	0,300	32	0,03125	0,794	13	0,07692	1,954	4,5	0,22222	5,644
80	0,01250	0,318	31,75	0,03150	0,800	12,7	0,07874	2,000	4,23	0,23641	6,005
72,57	0,01378	0,350	30	0,03333	0,847	12	0,08333	2,117	4	0,25000	6,350
72	0,01389	0,353	28,22	0,03544	0,900	11,50	0,08696	2,209	3	0,33333	8,467
64	0,01563	0,397	28	0,03571	0,907	11	0,09091	2,309	2	0,50000	12,700
63,5	0,01575	0,400	27	0,03704	0,941	10,16	0,09843	2,500			
60	0,01667	0,423	26	0,03846	0,977	10	0,10000	2,540			
56,44	0,01772	0,450	25,4	0,03937	1,000	9	0,11111	2,822			
56	0,01786	0,454	24	0,04167	1,058	8,47	0,11806	2,999			
50,8	0,01969	0,500	22	0,04545	1,155	8	0,12500	3,175			
48	0,02083	0,529	20,32	0,04921	1,250	7,26	0,13774	3,499			

Application examples

External radial grooving

Application: External radial grooving		Tool selection	1	Customer benefit			
Component:	Shaft	System: 305		Instantly, Guhring's insert with three cutting			
Material:	C60	Holder:	GH305.2020.125.00.04.R	edges convinced with good chip evacuation and longer tool life.			
	1.0601	Insert:	GE305.0130.000.BA.04.N				
Machine:	Gildemeister CTX410						
Cooling:	External cooling, 10 bar						
Oper. step:	Grooving to 1.4 mm						
vc:	100 m/min						
f:	0.15 mm						
ар:							
Groov. depth:	0.7 mm						

External radial grooving

Application: External radial grooving		Tool selection	1	Customer benefit		
Component:	Shaft	0,010		The change from external cooling to a		
Material:	Ck50	Holder:	GH305.2020.125.00.04.R.IK	Guhring holder with internal cooling resulted in a considerably longer tool life. There		
	1.1206	Insert:	Special grooving insert b 2.72 mm	is one tool change less per shift and 25		
Machine:	Gildemeister CTX420			more components can be manufactured per shift.		
Cooling:	10 bar			por still.		
Oper. step:	Grooving to b 2.72 mm					
vc:	10 m/min					
f:	0.08 mm					
ар:						
Groov. depth:	1.3 mm					

3 3

Axial grooving

Application: Axial grooving		Tool selection	1	Customer benefit
Component:	Adapter sleeve	System:	106	Under the same application conditions, the
Material:	16 MnCr 5	Holder:	GB106.0020.040.00.22.N.IK.CIT	Guhring tool instantly achieves 50% more components. Therefore, there is much
	1.7139	Insert:	GA106.0200.015.17.60.R	improvement potential in this application in
Machine:	Citizen A20			order to increase cutting speed and feed rate to save time.
Cooling:	Neat oil, 80 bar			Tate to save time.
Oper. step:	Semi-finishing			
vc:	100 m/min			
f:	0.02 mm			
ар:	D1 7.5 mm/D2 12.6 mm			
Groov. depth:	2.9 mm			

GÜHRING

Gühring KG | P.O. Box 100247 | 72423 Albstadt | Germany Gühring KG | Herderstrasse 50-54 | 72458 Albstadt | Germany Telephone: +49 74 31 17-0 | info@guehring.de | www.guehring.com