

APPLICATION EXAMPLES GROOVING SYSTEMS

Application example 1 – Drive shaft

Contents

Co	Component information page 3	
Machining		
1.	Boring of internal contour	page 4
2.	Gear milling	page 5
3.	Multi contour grooving	page 6
4.	Broaching of keyway	page 7
5.	Parting off into bore	page 8

Component information

Component

- Material: 42CrMo4
- Field of applications: see industries

Industries

- Automotive, automotive suppliers
- Powertrain applications
- Machines, engineering equipment

Machining

- Machine: turnmill machining centre
- Coolant: water soluble, 40 bar through the spindle
- Serial production: 500-800 pieces per month

Specifications

- Tight tolerance for grooving: +/- 0.015 mm
- Required surface roughness: $r_z = 6 \ \mu m$
- Required tolerance for broaching: P9

GROOVING Systems

1. Machining – Boring of internal contour

Initial situation

- Long cycle time: f = 0.06 mm
- Inconsistent surface roughness: $r_z = 5-10 \ \mu m$

Tool selection

System:110Insert:special toolTool holder:standard itemCoating:TiAIN nanoAGeometry:Wiper

Cutting parameter

Cutting speed:	100 m/min
Feedrate:	0.10 mm/rev.
Depth of cut:	0.20 mm

Customer benefit

- Reduction of cycle time by increasing feedrate to 0.10 mm
- ✓ Better chip forming/chip breakage
- ✓ Consistent tool life
- ✓ Consistent surface finish of $r_z = 2-4 \ \mu m$

without Wiper geometry

with Wiper geometry

Rigid solution for difficult tasks: No matter if long overhangs, large width of cuts or deep contouring. System 110 offers lots of options.

GROOVING Systems

2. Machining – Gear Milling (according to DIN 5482)

Initial situation

Customer requirement: reducing machining time through maximum number of teeth $v_c = 70$ m/min $f_z = 0.04$ mm

Tool selection

System:305Insert:special toolWidth:6 mmTool holder:special toolCoating:FIREMilling cutter with internal coolant

Cutting parameter

Cutting speed:100 m/minFeed per tooth:0.10 mmDepth of cut:2.20 mmNumber of cuts:1

Customer benefit

- ✓ Reduced cycle time: $z3 \rightarrow z4$ $v_c = +40\%$ $f_z = +50\%$
- ✓ thereby increase of productivity
- ✓ Improved surface finish from $r_z = 6 \ \mu m$ to $r_z = 4 \ \mu m$

GüHRING

3. Machining – Multi contour grooving

Initial situation

- Customer is using 2 tools
- Inconsistent tolerances caused by tool change
- Burrs occur at contour transition

Tool selection

128		
special tool		
24 mm		
special tool		
FIRE		
The insert covers the complete contour		
including chamfering		

Cutting speed: Feedrate: 70 m/min 0.05 mm/rev.

Customer benefit

- Time saving of approx 20 sec. per component = increase of productivity
- ✓ Burr free contour

- Insert can be reground
- Rigid M6 clamping screw in combination with the dovetail insert seat offers good rigidity

4. Machining – Broaching of keyway

Initial situation

- Poor and inconsistent surface finish caused by vibrations
- Burrs occur at the exit of the keyway, time consuming manual deburring is required

Tool selection

System:	128
Insert:	special tool
Tool holder:	special tool
Coating:	FIRE
Width:	12P9
Special design	with internal coolant

Feedrate:6,000 mm/minDepth of cut per stroke:0.06 mm

Customer benefit

- Big improvement in chip removal due to approaching the cutting edge with the coolant right from the front
- ✓ Special tool body designed for maximum rigidity
- Significant reduction of manual deburring

Innovative design of special "coolant flaps" to direct the coolant right onto the cutting edge.

5. Machining – Parting off into bore

Initial situation

- Inconsistent tool life: 500-800 cuts
- Inconsistent surface finish: $r_z = 8-15 \ \mu m$
- Poor chip forming

Tool selection

System:222Insert:standard itemBlade:standard itemCoating:FIRE

Cutting parameter

Cutting speed: Feedrate:

170 m/min 0.05 mm/rev.

Customer benefit

- ✓ Consistent tool life: 900-950 cuts
- ✓ Very good chip forming
- ✓ Improved surface finish: $r_z = 3-6 \ \mu m$

- Standard program available
- Parting off blade: width 3 mm

GüHRING

Application example 2 – Connector

Contents

Co	Component information page	
Machining		
1.	Internal boring	page 11
2.	External thread turning	page 12
3.	External profile grooving	page 13
4.	External grooving	page 14
5.	Keyway broaching	page 15

GROOVING SYSTEMS

Connector

Component information

Component

• Field of applications:

see industries

Material:
 1.4301

Industries

- Automotive, automotive suppliers
- Machines, engineering equipment
- · Electrical-/electronical industry
- General installation applications

Machining

- Machines: multi spindle machines
- Coolant:
 60 bar internal coolant with oil
- Serial production: 10,000 pieces per month

Specifications

- Reduction of cycle time
- Improving chip forming in grooving operations
- Burr free
- Improving the surface finish of the thread

1. Machining – Internal boring (combination tool boring into solid and turning)

Initial situation

- · Inconsistent tool life
- Tool breakage caused by chip clogging
- Current tool is also capable of boring and turning

Tool selection

System:	108
Insert:	special tool with
	internal coolant
Tool holder:	special tool with
	internal coolant
Coating:	TiAIN nanoA
Optimised shape and position ot the coolant supply	

Cutting parameter boring

Cutting speed:	120 m/min
Feedrate:	0.03 mm/rev.

Cutting parameter contouring

Cutting speed:	12
Feedrate:	0.0
Depth of cut:	1.(

20 m/min 08 mm/rev. 00 mm

Customer benefit

- ✓ Very good chip removal
- ✓ No longer tool breakage
- Very effective coolant supply benefits surface finish
- ✓ 10% Increase of tool life

SYSTEMS

2. Machining – External thread turning (pitch = 1.5 mm)

Initial situation

- Customer is using ISO inserts
- Burrs occur during machining
- Poor surface finish

Tool selection

System:305Insert:standard itemTool holder:standard item with
internal coolantCoating:FIREFull ground thread turning insert

Cutting parameter

Cutting speed:	80 m/min
Feed	= pitch
Depth of cut per stroke:	0.06 mm

Customer benefit

- ✓ 50% Improved surface finish due to full ground insert
- ✓ Less burrs
- Optimised chip removal due to the adjustable coolant supply
 - ightarrow exclusively at Gühring

3. Machining – External profile grooving

Initial situation

- · Currently customer is machining the complex contour with various tools
- This leads into long machining time with high production costs involved

Tool selection

System:	3
Insert:	S
Tool holder:	S
	in
Coating:	FI

80 pecial tool pecial tool with nternal coolant IRE

Cutting parameter roughing

Cutting speed:	15
Feedrate:	0.0

50 m/min 09 mm/rev.

200 m/min 0.04 mm/rev.

Cutting parameter finishing

Cutting	speed:
Feedrat	e:

Customer benefit

- ✓ Pre-grooving and finish grooving with one tool means no tool change needed
- Chamfering included in the ground contour means no burrs
- ✓ Reduced machining costs due to significantly reduced machining time

4. Machining - External grooving (3 grooves width 1.5 mm)

Initial situation

- Customer unhappy because of poor chip removal what occasionally leads to insert breakage
- Inconsistent surface finish

Tool selection

Cutting parameter

Cutting speed:18Feedrate:0.Depth of groove:5.

180 m/min 0.08 mm/rev. 5.00 mm

Customer benefit

- High process reliability due to save chip removal
- ✓ Occasionally insert breakage stopped
- ✓ Good surface finish: $r_z = 3-5 \ \mu m$

5. Machining – Keyway broaching (width = 5C11, depth = 5 mm)

Initial situation

- · Current tool is a standard item
- · Very limited space available

Tool selection

System:106Insert:special itemTool holder:standard item with
internal coolantCoating:TiAIN nanoA

Cutting parameter

Feedrate:7,000 mm/minDepth of cut per stroke:0.07 mm

Customer benefit

- Individually designed special insert with optimised rigidity
- ✓ Rigid insert allows high feed rate
- ✓ Improved tool life

MANY THANKS FOR YOUR ATTENTION