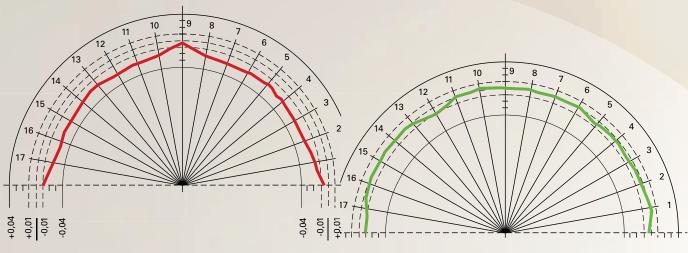
GUHRING

Fräser für den Formen- und Gesenkbau

HSC

DIE VORTEILE IM ÜBERBLICK



- absolut präzise Durchmesser-Toleranzen
- enge Radiustoleranzen
- Radiusanschliff mit konstanter Helixkorrektur
- Zylinder- und Radiusbereiche im One-pass-Verfahren geschliffen
- Schleifverfahren für höchste Oberflächenqualitäten

Übergangsloser Radiusbereich

Optimaler Verschleißschutz

Radiusgenauigkeit am Wettbewerbsfräser (+/- 0,05 mm)

GF 500 Radius im Toleranzbereich +/- 0,01 mm

Gühring Formenbaufräser Harte Schale schützt den Kern

Torus-Fräser GF 500 T Schruppen, Schlichten und Kopieren bis 54 HRC z.B.: Art.-Nr. 3863

Die Vorteile im Überblick

- die GF 500 zur Bearbeitung von vergütetem Stahl, rostfreiem Stahl, hochfestem Aluminium und Titan
- GF 300 zur Bearbeitung von gehärtetem Stahl, Hartguss und Verschleiß-Werkstoffen
- jetzt neu mit ultraharter Signum Beschichtung: 5500 HV
- feinste Oberflächen durch homogenisierte Schneidkanten
- höchste Standzeiten

Höhere Standzeiten durch verbesserte Beschichtung: SIGNUM

Radius-Fräser GF 500 B Kopieren bis 54 HRC z.B.: Art.-Nr. 3866

Torus-Fräser GF 300 T Schruppen, Schlichten und Kopieren von 40-63 HRC z.B.: Art.-Nr. 3361

Radius-Fräser GF 300 B Kopieren von 50-63 HRC z.B.: Art.-Nr. 3359

RF 100 H - Hochleistungs-Schaftfräser für gehärtete Stähle auch über 63 HRC

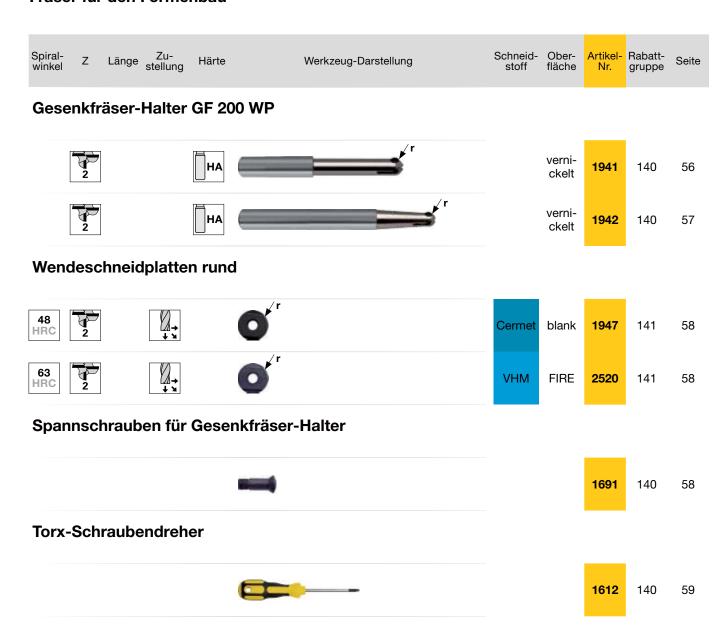
Kapiteleinteilung in Materialklassen

Auf den Preis- und Programmseiten finden Sie zu jedem Werkzeug Eignungsempfehlungen für die nachfolgenden Anwendungsgruppen:

Anwendungsgruppe	Werkstoffbeispiele	Kapitel
Р	Stahl, hochlegierter Stahl	Stahl
M	Rostfreier Stahl	Rostfrei
K	Grauguss, Sphäroguss und Temperguss	Stahl
N	Aluminium und andere Nichteisenmetalle	Aluminium und Diamant
S	Sonder-, Super- und Titanlegierungen	Rostfrei
Н	Gehärteter Stahl und Hartguss	Stahl und Radiusfräser

Piktogramme

Anwendung				
	Nuten Schruppen	Rampen Helix	Bohren Schlichter	n Kopieren
Werkstoffhärte	32 48 HRC 63 HRC			
Schneidstoff	HSCO M42 HSS-E-PM	PKD	<mark>VНМ</mark>	
	Schnellstahl	Polykristalliner Diamant	Vollhartmetall Feinstkorn ((HM-UF)
Schaftform	HA -HA HB -HB	nach DIN 1835	MK Sk Steilkegel	
Norm	DIN 327 DIN 844 DIN 845 DIN 850	DIN 851 DIN 1833 DIN 2328	DIN 6518 DIN 6528	G Gühring Standard
	TIACH DIN		110	
Тур	W N NH H	HF NF WF WR	NR NRf HR	HRf
	Anwendungsgebiet ähnlich DI	N 1836		
Länge	ANN	anna 3xD	4xD 5xD	
	kurz (DIN) lang (DIN)	mittellang extralang		
Schneidenzahl	2 3 3-6 4	4-5 4-6 4-8 5	5-6 6 6+	
	Anzahl der Hauptschneiden			
Spiralwinkel	30° 33° 33° 33° 33° 33° 33° 33° 33° 33°	1 36° (33° 41° 42° 44° 43° 44° 44° 44° 44° 44° 44° 44° 44	[A 45° A [A A A A A A A A	20° 45° 55°
	Grobe des Spiralwirkeis / Ariz			
Schneidenform	45°	R±0,01 R±0,02 R±0,05	R±0,02 R±0,05	60° 90° 120°
	Eckenfase	Radius mit Toleranz		Winkel der Fasenfräser
Zustellung			₩	
	für seitliche Zustellungen	für seitliche Zustellungen und zum Schrägeintauchen	für seitliche Zustellungen, zum Schrägeintauchen ur	nd Bohren
Spanwinkel	-15° -7° 0° 3°	4° 5° 6° 7°	8° 9° 10°	11° 12° 15° 25°
	Spanwinkel der Umfangsschn	eiden		
-				


Spiral- Z Länge Zu- Härte Werkzeug-Darstellung winkel	Schneid- stoff	Ober- fläche	Artikel- Nr.	Rabatt- gruppe	Seite
Langlochfräser mit Eckradius (2-Schneider) mit Zentrumschnitt					
30° 2 AND	VHM	blank	3106	117	13
30° 2 48 HRC	VHM	FIRE	3561	117	13
HSC-Kopierfräser mit Torusanschliff GF 500 T mit Zentrumschnitt					
30° 2 SA HRC	VHM	Signum	3863	106	14
30° 2 54 HRC	VHM	Signum	3856	106	15
30° 2 54 HRC	VHM	Signum	3865	106	16
30° 2	VHM	Signum	3859	106	17
30° 2 1 1 1 54 HRC	r VHM	Signum	3860	106	18
RF 100 A mit Zentrumschnitt					
39° 41° 3	VHM	blank	3599	106	19
39° 41° 31	VHM	blank	6729	106	19
Schaftfräser mit Eckradius (4-Schneider) mit Zentrumschnitt					
30° 4 32 HRC	VHM	blank	3111	106	20
30° 4 HRC 48	VHM	FIRE	3562	106	20
HSC-Kopierfräser mit Torusanschliff GF 500 T mit Zentrumschnitt					
30° 4 HRC 7	VHM	Signum	4268	106	21
30° 4	r VHM	Signum	4269	106	22

Spiral- winkel	Z	Länge	Zu- stellung	Härte	Werkzeug-Darstellung	Schneid- stoff	Ober- fläche	Artikel- Nr.	Rabatt- gruppe	Seite
			andard hnitt	I RF 10	00 U					
35° 38°	4	ANN	₩	54 HRC	r	VHM	FIRE	3872	106	23
35°	4		₩	54 HRC	r	VHM	FIRE	3873	106	23
		_	100 H hnitt	l			_			
40° 42°	4	2000		63 HRC		VHM	Signum	3895	106	24
40° 42°	4	ANN		63 HRC		VHM	Signum	3896	106	24
			räser (chnitt	GS 100	OH (feinverzahnt)					
20°	4			54 HRC		VHM	Signum	6704	106	25
20°	4	****		54 HRC		VHM	Signum	6705	106	25
20°	4	.5555		54 HRC		VHM	Signum	3682	117	26
			iser mi chnitt	it Toru	sanschliff GF 300 T					
30°	4			63 HRC		VHM	Signum	3361	106	27
30°	4			63 HRC	r	VHM	Signum	3362	106	38
			naftfräs chnitt	ser mi	t Eckenradius GH 100 U					
45°	6+	3000		54 HRC	· · · · · · · · · · · · · · · · · · ·	VHM	FIRE	3563	106	39
	_	_	nfräse chnitt	r GH 1	00 H					
55°	6+	AMN		63 HRC		VHM	Signum	4270	106	30

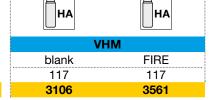
Spiral- winkel	Z	Länge	Zu- stellung	Härte	Werkzeug-Darstellung	Schneid- stoff	Ober- fläche	Artikel- Nr.	Rabatt- gruppe	Seite
	_	nrzah rumsc		r mit E	ckradius GH 100 H					
55°	6	mmv		63 HRC		VHM	Signum	3363	106	31
		nrzah umsc	nfräsei chnitt	r GH 1	00 H					
55°	6+	****		63 HRC		VHM	Signum	3715	106	32
55°	6+	MININ		63 HRC		VHM	Signum	3716	106	33
		fräse umsc		ollrad/	ius (2-Schneider)					
30°	2		₩	48 HRC	r r	VHM	FIRE	3679	117	34
30°	2	****	₩	48 HRC	/r	VHM	FIRE	3049	117	34
30°	2	S1333	₩	32 HRC	/r	VHM	blank	3024	117	35
30°	2	855	₩	32 HRC	/r	VHM	blank	3308	117	36

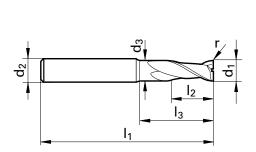
Spiral- Z Länge Zu- Härte Werkzeug-Darstellung winkel	Schneid- stoff	Ober- fläche	Artikel- Nr.	Rabatt- gruppe	Seite
Langlochfräser mit Vollradius XL (2-Schneider) mit Zentrumschnitt					
30° 2 INNING A HRC	VHM	blank	3014	117	37
$\begin{bmatrix} 30^{\circ} \\ 2 \end{bmatrix} \begin{bmatrix} \downarrow \\ \downarrow \downarrow \end{bmatrix} \begin{bmatrix} 48 \\ HRC \end{bmatrix}$	VHM	FIRE	3030	117	37
Schaftfräser mit Vollradius (4-Schneider) mit Zentrumschnitt					
30° 4 SANS AND SANS A	VHM	blank	3306	117	38
30° 4 SANS HRC 48	VHM	FIRE	3727	117	38
$\begin{bmatrix} 30^{\circ} \\ 4 \end{bmatrix} \begin{bmatrix} 4 \\ 4 \end{bmatrix} \begin{bmatrix} 32 \\ + KC \end{bmatrix}$	VHM	blank	3026	117	39
30° 4 A8 HRC	VHM	FIRE	3050	117	39
Ratiofräser RF 100 VA mit Zentrumschnitt					
36° 4	VHM	TiAIN- nanoA	6707	106	40
36° 4	VHM	TiAIN- nanoA	6708	106	40
Schaftfräser mit Vollradius XL (4-Schneider) mit Zentrumschnitt					
30° 4 INDIES AS HRC	VHM	blank	3015	117	41
30° 4 HRC 48 HRC	VHM	FIRE	3043	117	41

Spiral- Z Länge Zu- Härte Werkzeug-Darstellung winkel	Schneid- stoff	Ober- fläche	Artikel- Nr.	Rabatt- gruppe	Seite
HSC-Kopierfräser mit Vollradius GF 500 B mit Zentrumschnitt					
30° 2 SAN HRC T	VHM	Signum	3854	106	42
30° 2	VHM	Signum	3866	106	43
30° 2 SA HRC T	VHM	Signum	3848	106	44
30° 2	VHM	Signum	3855	106	45
30° 2	VHM	Signum	3849	106	46
30° 2 Innur 154 HRC	VHM	Signum	3853	106	47
30° 4 HRC 54	VHM	Signum	4248	106	48
30° 4 HRC 54	VHM	Signum	4249	106	49
Vollradius-Kopierfräser GF 200 B mit Zentrumschnitt					
30° 48 HRC	VHM	FIRE	3045	106	50
	VHM	FIRE	3044	106	51
Hart-Kopierfräser mit Vollradius GF 300 B mit Zentrumschnitt					
30° 2 AND	VHM	Signum	3359	106	52
30° 2 ANNIE AND HRC	VHM	Signum	3360	106	53
30° 4	VHM	Signum	4246	106	54
30° 4 HRC	VHM	Signum	4247	106	54

Langlochfräser mit Eckradius (2-Schneider)

mit Zentrumschnitt




48 HRC

Code-Nr.	d1 h10	d2 h6	d3	l1	12	13	r	Z
Code-M.	mm	mm	mm	mm	mm	mm	mm	
6,005	6,000	6,000	5,700	57,00	10,00	20,00	0,50	2
6,010	6,000	6,000	5,700	57,00	10,00	20,00	1,00	2
8,005	8,000	8,000	7,700	63,00	16,00	26,00	0,50	2
8,010	8,000	8,000	7,700	63,00	16,00	26,00	1,00	2
8,015	8,000	8,000	7,700	63,00	16,00	26,00	1,50	2
8,020	8,000	8,000	7,700	63,00	16,00	26,00	2,00	2
10,005	10,000	10,000	9,500	72,00	19,00	30,00	0,50	2
10,010	10,000	10,000	9,500	72,00	19,00	30,00	1,00	2
10,015	10,000	10,000	9,500	72,00	19,00	30,00	1,50	2
10,020	10,000	10,000	9,500	72,00	19,00	30,00	2,00	2
12,005	12,000	12,000	11,500	83,00	22,00	36,00	0,50	2
12,010	12,000	12,000	11,500	83,00	22,00	36,00	1,00	2
12,015	12,000	12,000	11,500	83,00	22,00	36,00	1,50	2
12,020	12,000	12,000	11,500	83,00	22,00	36,00	2,00	2
16,010	16,000	16,000	15,500	92,00	26,00	42,00	1,00	2
16,015	16,000	16,000	15,500	92,00	26,00	42,00	1,50	2
16,020	16,000	16,000	15,500	92,00	26,00	42,00	2,00	2
20,010	20,000	20,000	19,500	104,00	32,00	52,00	1,00	2
20,015	20,000	20,000	19,500	104,00	32,00	52,00	1,50	2
20,020	20,000	20,000	19,500	104,00	32,00	52,00	2,00	2

Verfi	igbarkeit	
•		
•		
•		
•		
•		
•	•	

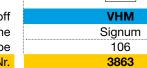
Schnittwerte: Nuten* und Schruppen

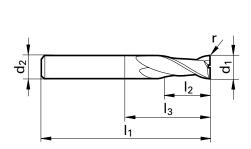
ISO Code	Härte	Schnitttiefe	Schnittbreite**	Schnittgeschw.	fz (mm/z) bei Nenn-Ø							
130 Code	пане	a _p	a _e	v _c	2	4	6	8	10	12	16	20
Р	≤ 850 N/mm ²	0,5xd	1xd	125	0,013	0,018	0,025	0,032	0,042	0,049	0,063	0,07
Stahl	850 - 1400 N/mm ²	0,5xd	1xd	95	0,01	0,015	0,02	0,024	0,033	0,039	0,048	0,057
M	≤ 750 N/mm ²	0,5xd	1xd	85	0,01	0,015	0,02	0,024	0,033	0,039	0,048	0,057
Rostfreier Stahl	≥ 750 N/mm ²	0,5xd	1xd	50	0,007	0,01	0,015	0,018	0,027	0,03	0,039	0,048
K Guss	≥ 240 HB 30	0,5xd	1xd	100	0,01	0,015	0,02	0,024	0,033	0,039	0,048	0,057
N Aluminium	≤ 7% Si	1xd	1xd	160	0,013	0,018	0,025	0,032	0,042	0,049	0,063	0,07

 $^{^{\}star}$ Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" empfohlen.

^{**} Beim Schlichten mit $a_e=0.02xd$ kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden. Alle Angaben beziehen sich auf beschichtete Werkzeuge. Bei blanken Werkzeugen bitte v_c -40 % und f_z -25%!

mit Zentrumschnitt





Schneidstoff Oberfläche Rabattgruppe Artikel-Nr.

Code-Nr.	d1 e8	d2 h6	I1	12	13	r	Z	
	mm	mm	mm	mm	mm	mm		
	4,000	4,000	4,000	80,00	8,00	52,00	0,50	2
	6,000	6,000	6,000	100,00	12,00	64,00	1,00	2
	8,000	8,000	8,000	100,00	16,00	64,00	1,00	2
	10,000	10,000	10,000	100,00	20,00	60,00	1,00	2
	12,000	12,000	12,000	120,00	24,00	75,00	1,50	2

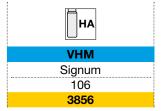
1 [
	Verfügbarkeit	

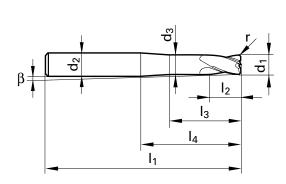
OOI III II CERTOI I	c. iii o ooiii a	ppen una moc	Ropicinasci									
ISO Code	Härte	Schnitttiefe \$	Schnittbreite**	Schnittgeschw.			fz (mm/z) k	oei Nenn	-Ø		
130 Code	пане	a _p	a _e	v _c	2	3	4	6	8	10	12	16
Р	≤ 850 N/mm ²	0,2xd	0,5xd	200	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Stahl	850 - 1400 N/mm ²	0,15xd	0,4xd	180	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
M	≤ 750 N/mm ²	0,15xd	0,4xd	140	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Rostfreier Stahl	≥ 750 N/mm ²	0,15xd	0,4xd	100	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
N Aluminium	≤ 7% Si	0,15xd	0,4xd	280	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
S Ti-Sonderl.	≤ 1300 N/mm ²	0,1xd	0,4xd	90	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,15
H Gehärt, Stahl	bis 54 HRC	0,05xd	0,3xd	140	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1

^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" und bei Hartbearbeitung Luftkühlung empfohlen.

^{**} Beim HSC-Kopierfräsen und imachining mit $a_e = 0,1xd$ kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden.

mit Zentrumschnitt





Schneidstoff Oberfläche Rabattgruppe Artikel-Nr.

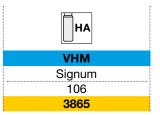
	d1 h8	d2 h6	d3	I1	12	13	14	r	β	Z	
Code-Nr.	mm	mm	mm	mm	mm	mm	mm	mm	0		Verfügbarkeit
0,501	0,500	4,000	0,480	50,00	1,00	3,00	22,00	0,10	4,60	2	•
1,002	1,000	4,000	0,950	50,00	2,00	6,00	22,00	0,20	4,00	2	•
2,000	2,000	6,000	1,900	57,00	3,00	8,00	21,00	0,50	5,60	2	•
2,002	2,000	6,000	1,900	57,00	3,00	8,00	21,00	0,20	5,50	2	•
3,000	3,000	6,000	2,800	57,00	3,50	9,00	21,00	0,50	4,20	2	•
3,003	3,000	6,000	2,800	57,00	3,50	9,00	21,00	0,30	4,20	2	•
4,000	4,000	6,000	3,800	57,00	4,00	9,40	21,00	1,00	2,90	2	•
4,003	4,000	6,000	3,800	57,00	4,00	9,40	21,00	0,30	2,80	2	•
4,005	4,000	6,000	3,800	57,00	4,00	9,40	21,00	0,50	2,80	2	•
5,005	5,000	6,000	4,800	57,00	5,00	11,90	21,00	0,50	1,40	2	•
5,010	5,000	6,000	4,800	57,00	5,00	11,90	21,00	1,00	1,50	2	•
6,000	6,000	6,000	5,700	57,00	6,00	20,00	21,00	2,00	-	2	•
6,005	6,000	6,000	5,700	57,00	6,00	20,00	21,00	0,50	-	2	•
6,010	6,000	6,000	5,700	57,00	6,00	20,00	21,00	1,00	-	2	•
6,015	6,000	6,000	5,700	57,00	6,00	20,00	21,00	1,50	-	2	•
8,000	8,000	8,000	7,700	63,00	8,00	26,00	27,00	2,00	-	2	•
8,005	8,000	8,000	7,700	63,00	8,00	26,00	27,00	0,50	-	2	•
8,010	8,000	8,000	7,700	63,00	8,00	26,00	27,00	1,00	-	2	•
8,015	8,000	8,000	7,700	63,00	8,00	26,00	27,00	1,50	-	2	•
10,000	10,000	10,000	9,500	72,00	10,00	30,00	32,00	3,00	-	2	•
10,005	10,000	10,000	9,500	72,00	10,00	30,00	32,00	0,50	-	2	•
10,010	10,000	10,000	9,500	72,00	10,00	30,00	32,00	1,00	-	2	•
10,015	10,000	10,000	9,500	72,00	10,00	30,00	32,00	1,50	-	2	•
10,020	10,000	10,000	9,500	72,00	10,00	30,00	32,00	2,00	-	2	•
12,000	12,000	12,000	11,500	83,00	12,00	36,00	38,00	4,00	-	2	•
12,020	12,000	12,000	11,500	83,00	12,00	36,00	38,00	2,00	-	2	•

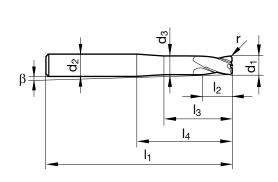
OOI III II CERTOI I	c. iii o ooiii a	ppen una moc	Ropicinasci									
ISO Code	Härte	Schnitttiefe \$	Schnittbreite**	Schnittgeschw.			fz (mm/z) k	oei Nenn	-Ø		
130 Code	пане	a _p	a _e	v _c	2	3	4	6	8	10	12	16
Р	≤ 850 N/mm ²	0,2xd	0,5xd	200	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Stahl	850 - 1400 N/mm ²	0,15xd	0,4xd	180	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
M Rostfreier	≤ 750 N/mm ²	0,15xd	0,4xd	140	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Stahl	≥ 750 N/mm ²	0,15xd	0,4xd	100	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
N Aluminium	≤ 7% Si	0,15xd	0,4xd	280	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
S Ti-Sonderl.	≤ 1300 N/mm ²	0,1xd	0,4xd	90	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,15
H Gehärt, Stahl	bis 54 HRC	0,05xd	0,3xd	140	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1

^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" und bei Hartbearbeitung Luftkühlung empfohlen.

^{**} Beim HSC-Kopierfräsen und imachining mit $a_e = 0,1xd$ kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden.

mit Zentrumschnitt





Schneidstoff Oberfläche Rabattgruppe Artikel-Nr.

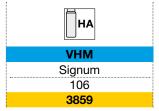
											The state of the s
Code-Nr.	d1 h8	d2 h6	d3	l1	12	13	14	r	β	Z	Vorfügbarkoit
Code-IVI.	mm	mm	mm	mm	mm	mm	mm	mm	٥		Verfügbarkeit
0,500	0,500	4,000	0,480	50,00	1,00	6,00	20,00	0,10	5,10	2	•
1,002	1,000	4,000	0,950	50,00	2,00	12,00	20,00	0,20	4,40	2	•
2,002	2,000	6,000	1,900	80,00	3,00	18,00	40,00	0,20	2,90	2	•
2,005	2,000	6,000	1,900	80,00	3,00	18,00	40,00	0,50	2,90	2	•
3,003	3,000	6,000	2,800	80,00	3,50	25,00	40,00	0,30	2,20	2	•
3,005	3,000	6,000	2,800	80,00	3,50	25,00	40,00	0,50	2,20	2	•
4,003	4,000	6,000	3,800	80,00	4,00	32,00	40,00	0,30	1,50	2	•
4,005	4,000	6,000	3,800	80,00	4,00	32,00	40,00	0,50	1,50	2	•
4,010	4,000	6,000	3,800	80,00	4,00	32,00	40,00	1,00	1,50	2	•
5,005	5,000	6,000	4,800	80,00	5,00	39,00	40,00	0,50	0,80	2	•
5,010	5,000	6,000	4,800	80,00	5,00	39,00	40,00	1,00	0,80	2	•
6,000	6,000	6,000	5,600	80,00	6,00	39,00	44,00	2,00	-	2	•
6,005	6,000	6,000	5,700	80,00	6,00	39,00	44,00	0,50	-	2	•
6,010	6,000	6,000	5,700	80,00	6,00	39,00	44,00	1,00	-	2	•
6,015	6,000	6,000	5,700	80,00	6,00	39,00	44,00	1,50	-	2	•
8,000	8,000	8,000	7,600	100,00	7,00	59,00	64,00	2,00	-	2	•
8,005	8,000	8,000	7,700	100,00	8,00	59,00	64,00	0,50	-	2	•
8,010	8,000	8,000	7,700	100,00	8,00	59,00	64,00	1,00	-	2	•
8,015	8,000	8,000	7,700	100,00	8,00	59,00	64,00	1,50	-	2	•
10,000	10,000	10,000	9,600	120,00	8,00	73,00	80,00	3,00	-	2	•
10,005	10,000	10,000	9,500	120,00	10,00	73,00	80,00	0,50	-	2	•
10,010	10,000	10,000	9,500	120,00	10,00	73,00	80,00	1,00	-	2	
10,015	10,000	10,000	9,500	120,00	10,00	73,00	80,00	1,50	-	2 2	
10,020 12,000	10,000	10,000	9,500 11,500	120,00 120,00	10,00 10,00	73,00 68,00	80,00	2,00	-	2	
,	12,000	12,000	11,500	,	,	,	75,00	4,00 2,00	-	2	
12,020	12,000	12,000	11,300	120,00	12,00	68,00	75,00	۷,00	-	2	

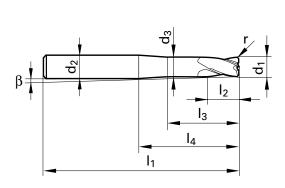
OOI III II CERTOI I	c. iii o ooiii a	ppen una moc	Ropicinasci									
ISO Code	Härte	Schnitttiefe \$	Schnittbreite**	Schnittgeschw.			fz (mm/z) k	oei Nenn	-Ø		
130 Code	пане	a _p	a _e	v _c	2	3	4	6	8	10	12	16
Р	≤ 850 N/mm ²	0,2xd	0,5xd	200	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Stahl	850 - 1400 N/mm ²	0,15xd	0,4xd	180	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
M	≤ 750 N/mm ²	0,15xd	0,4xd	140	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Rostfreier Stahl	≥ 750 N/mm ²	0,15xd	0,4xd	100	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
N Aluminium	≤ 7% Si	0,15xd	0,4xd	280	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
S Ti-Sonderl.	≤ 1300 N/mm ²	0,1xd	0,4xd	90	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,15
H Gehärt, Stahl	bis 54 HRC	0,05xd	0,3xd	140	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1

^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" und bei Hartbearbeitung Luftkühlung empfohlen.

^{**} Beim HSC-Kopierfräsen und imachining mit $a_e = 0,1xd$ kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden.

mit Zentrumschnitt





Code-Nr.	d1 h8	d2 h6	d3	I1	12	13	14	r	β	Z
Code-Ivi.	mm	mm	mm	mm	mm	mm	mm	mm	٥	
2,000	2,000	6,000	1,800	80,00	3,00	8,00	40,00	0,50	2,90	2
3,000	3,000	6,000	2,800	80,00	3,50	12,00	40,00	0,50	2,20	2
4,000	4,000	6,000	3,800	80,00	4,00	20,00	40,00	1,00	1,50	2
6,000	6,000	8,000	5,600	100,00	6,00	59,00	60,00	2,00	1,00	2
8,000	8,000	10,000	7,600	120,00	7,00	74,00	75,00	2,00	0,80	2
10,000	10,000	12,000	9,600	120,00	8,00	68,00	70,00	3,00	0,90	2
12,000	12,000	16,000	11,500	150,00	10,00	95,80	100,00	4,00	1,20	2

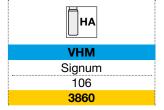
Verfügbarkeit	
•	
•	
•	
•	
•	
•	
•	

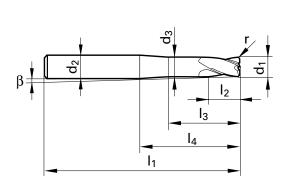
Schilltimer	te. nro-schru	ppen una nac	-Kopierirasen											
ISO Code	Härte	Schnitttiefe :	Schnittbreite**	Schnittgeschw.	fz (mm/z) bei Nenn-Ø									
130 Code	naite	a _p	a _e	v _c	2	3	4	6	8	10	12	16		
P	≤ 850 N/mm ²	0,2xd	0,5xd	200	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15		
Stahl	850 - 1400 N/mm ²	0,15xd	0,4xd	180	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15		
M Rostfreier	≤ 750 N/mm ²	0,15xd	0,4xd	140	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15		
Stahl	≥ 750 N/mm ²	0,15xd	0,4xd	100	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1		
N Aluminium	≤ 7% Si	0,15xd	0,4xd	280	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15		
S Ti-Sonderl.	≤ 1300 N/mm ²	0,1xd	0,4xd	90	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,15		
H Gehärt. Stahl	bis 54 HRC	0,05xd	0,3xd	140	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1		

^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" und bei Hartbearbeitung Luftkühlung empfohlen.

^{**} Beim HSC-Kopierfräsen und imachining mit $a_e = 0.1xd$ kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden.

mit Zentrumschnitt





Schneidstoff Oberfläche Rabattgruppe Artikel-Nr.

Code-Nr.	d1 h8	d2 h6	d3	I1	12	13	14	r	β	Z
Code-Mr.	mm	mm	mm	mm	mm	mm	mm	mm	0	
2,000	2,000	6,000	1,800	80,00	3,00	8,00	40,00	0,50	2,90	2
3,000	3,000	6,000	2,800	80,00	3,50	12,00	40,00	0,50	2,20	2
4,000	4,000	6,000	3,800	100,00	4,00	20,00	60,00	0,50	1,00	2
6,000	6,000	8,000	5,600	120,00	6,00	79,00	80,00	1,00	0,80	2
8,000	8,000	10,000	7,600	150,00	7,00	104,00	105,00	1,00	0,60	2

Verfügbarkeit
•
•

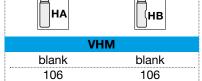
Schilltwei	le. HPC-3CIIIu	ppen unu nac	-Kopierirasen									
ISO Code	Härte	Schnitttiefe \$	Schnittbreite**	Schnittgeschw.			fz (mm/z) k	oei Nenn	-Ø		
130 Code	пане	a _p	a _e	v _c	2	3	4	6	8	10	12	16
Р	≤ 850 N/mm ²	0,2xd	0,5xd	200	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Stahl	850 - 1400 N/mm ²	0,15xd	0,4xd	180	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
M Rostfreier	≤ 750 N/mm ²	0,15xd	0,4xd	140	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Stahl	≥ 750 N/mm ²	0,15xd	0,4xd	100	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
N Aluminium	≤ 7% Si	0,15xd	0,4xd	280	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
S Ti-Sonderl.	≤ 1300 N/mm ²	0,1xd	0,4xd	90	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,15
H Gehärt. Stahl	bis 54 HRC	0,05xd	0,3xd	140	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1

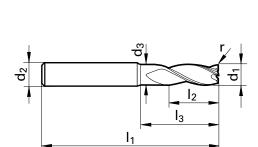
^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" und bei Hartbearbeitung Luftkühlung empfohlen.

^{**} Beim HSC-Kopierfräsen und imachining mit $a_e = 0,1xd$ kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden.

Ratiofräser Alu RF 100 A

mit Zentrumschnitt





3599

Code-Nr.	d1 e8	d2 h6	d3	l1	12	13	r	Z	Verfügbarkeit
Code-M.	mm	mm	mm	mm	mm	mm	mm		Verlügbarkeit
6,005	6,000	6,000	5,700	57,00	13,00	20,00	0,50	3	•
6,010	6,000	6,000	5,700	57,00	13,00	20,00	1,00	3	•
8,005	8,000	8,000	7,700	63,00	19,00	26,00	0,50	3	•
8,010	8,000	8,000	7,700	63,00	19,00	26,00	1,00	3	•
10,005	10,000	10,000	9,500	72,00	22,00	30,00	0,50	3	•
10,010	10,000	10,000	9,500	72,00	22,00	30,00	1,00	3	•
10,015	10,000	10,000	9,500	72,00	22,00	30,00	1,50	3	•
12,005	12,000	12,000	11,500	83,00	26,00	36,00	0,50	3	•
12,010	12,000	12,000	11,500	83,00	26,00	36,00	1,00	3	•
12,015	12,000	12,000	11,500	83,00	26,00	36,00	1,50	3	•
12,020	12,000	12,000	11,500	83,00	26,00	36,00	2,00	3	•
12,025	12,000	12,000	11,500	83,00	26,00	36,00	2,50	3	•
12,030	12,000	12,000	11,500	83,00	26,00	36,00	3,00	3	•
12,040	12,000	12,000	11,500	83,00	26,00	36,00	4,00	3	•
16,010	16,000	16,000	15,500	92,00	32,00	42,00	1,00	3	•
16,020	16,000	16,000	15,500	92,00	32,00	42,00	2,00	3	•
16,025	16,000	16,000	15,500	92,00	32,00	42,00	2,50	3	•
16,030	16,000	16,000	15,500	92,00	32,00	42,00	3,00	3	•
16,040	16,000	16,000	15,500	92,00	32,00	42,00	4,00	3	•
20,010	20,000	20,000	19,500	104,00	38,00	52,00	1,00	3	•
20,020	20,000	20,000	19,500	104,00	38,00	52,00	2,00	3	•
20,025	20,000	20,000	19,500	104,00	38,00	52,00	2,50	3	•
20,030	20,000	20,000	19,500	104,00	38,00	52,00	3,00	3	•
20,040	20,000	20,000	19,500	104,00	38,00	52,00	4,00	3	•

Schnittwerte: Nuten und HPC-Schruppen*

Committee	e. Naten ana m	O Com appen										
ISO Code	Härte***	Schnitttiefe	Schnittbreite**	Schnittgeschw.			fz (mm/z) b	ei Neni	n-Ø		
130 00de	i iai te	a _p	a _e	v _c	3	6	8	10	12	16	20	25
N	≤ 3% Si	1xd	1xd	600	0,045	0,05	0,065	0,08	0,12	0,15	0,18	0,25
Aluminium	≤ 7% Si	1xd	1xd	280	0,03	0,045	0,05	0,065	0,08	0,12	0,15	0,18

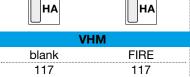
^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" empfohlen.

^{**} Beim Trochoidalfräsen und imachining mit a_p 2xd und a_e 0,15xd können Schnittgeschwindigkeit und Vorschub um je 50 % erhöht werden.

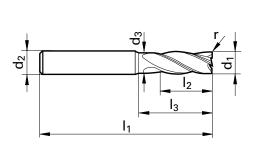
^{***} Optional bieten wir für weiche und klebrige Aluminium-Legierungen und Kunststoffe unsere Carbo-Beschichtung als Sonderwerkzeug an.

Schaftfräser mit Eckradius (4-Schneider)

mit Zentrumschnitt



3562



3111

Code-Nr.	d1 h10	d2 h6	d3	l1	12	13	r	Z	Verfügbarkeit
Code-IVI.	mm	mm	mm	mm	mm	mm	mm		veriugbarkeit
6,005	6,000	6,000	5,700	57,00	13,00	20,00	0,50	4	•
6,010	6,000	6,000	5,700	57,00	13,00	20,00	1,00	4	•
8,005	8,000	8,000	7,700	63,00	19,00	26,00	0,50	4	•
8,010	8,000	8,000	7,700	63,00	19,00	26,00	1,00	4	•
8,015	8,000	8,000	7,700	63,00	19,00	26,00	1,50	4	•
8,020	8,000	8,000	7,700	63,00	19,00	26,00	2,00	4	•
10,005	10,000	10,000	9,500	72,00	22,00	30,00	0,50	4	•
10,008	10,000	10,000	9,500	72,00	22,00	30,00	0,80	4	•
10,010	10,000	10,000	9,500	72,00	22,00	30,00	1,00	4	•
10,015	10,000	10,000	9,500	72,00	22,00	30,00	1,50	4	•
10,020	10,000	10,000	9,500	72,00	22,00	30,00	2,00	4	•
12,005	12,000	12,000	11,500	83,00	26,00	36,00	0,50	4	•
12,008	12,000	12,000	11,500	83,00	26,00	36,00	0,80	4	•
12,010	12,000	12,000	11,500	83,00	26,00	36,00	1,00	4	•
12,015	12,000	12,000	11,500	83,00	26,00	36,00	1,50	4	•
12,020	12,000	12,000	11,500	83,00	26,00	36,00	2,00	4	•
16,010	16,000	16,000	15,500	92,00	32,00	42,00	1,00	4	•
16,015	16,000	16,000	15,500	92,00	32,00	42,00	1,50	4	•
16,020	16,000	16,000	15,500	92,00	32,00	42,00	2,00	4	•
20,010	20,000	20,000	19,500	104,00	38,00	52,00	1,00	4	•
20,015	20,000	20,000	19,500	104,00	38,00	52,00	1,50	4	•
20,020	20,000	20,000	19,500	104,00	38,00	52,00	2,00	4	•

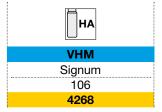
Schnittwerte: Schruppen* und Schlichten

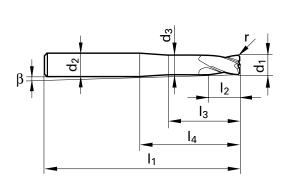
ISO Code	Härte	Schnitttiefe	Schnittbreite**	Schnittgeschw.			fz ((mm/z) b	oei Nenr	ı-Ø		
130 Code	пане	a_p	a _e	V _C	2	4	6	8	10	12	16	20
P	≤ 850 N/mm ²	1,5xd	0,5xd	125	0,013	0,018	0,025	0,032	0,042	0,049	0,063	0,07
Stahl	850 - 1400 N/mm ²	1,5xd	0,5xd	95	0,01	0,015	0,02	0,024	0,033	0,039	0,048	0,057
M	≤ 750 N/mm ²	1,5xd	0,5xd	85	0,01	0,015	0,02	0,024	0,033	0,039	0,048	0,057
Rostfreier Stahl	≥ 750 N/mm ²	1,5xd	0,2xd	50	0,007	0,01	0,015	0,018	0,027	0,03	0,039	0,048
K Guss	≥ 240 HB 30	1,5xd	0,5xd	100	0,01	0,015	0,02	0,024	0,033	0,039	0,048	0,057
N Aluminium	≤ 7% Si	1,5xd	0,3xd	160	0,013	0,018	0,025	0,032	0,042	0,049	0,063	0,07

 $^{^{\}star}$ Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" empfohlen.

^{**} Beim Schlichten mit $a_e=0.02xd$ kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden. Alle Angaben beziehen sich auf beschichtete Werkzeuge. Bei blanken Werkzeugen bitte v_c -40 % und f_z -25%!

mit Zentrumschnitt





Schneidstoff Oberfläche Rabattgruppe Artikel-Nr.

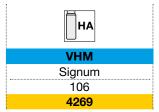
Code-Nr.	d1 h8	d2 h6	d3	l1	12	13	14	r	β	Z	Verfügbarkeit
Code-IVI.	mm	mm	mm	mm	mm	mm	mm	mm	٥		veriugbarkeit
3,003	3,000	6,000	2,800	57,00	3,50	14,00	21,00	0,30	4,20	4	•
3,005	3,000	6,000	2,800	57,00	3,50	14,00	21,00	0,50	4,20	4	•
4,003	4,000	6,000	3,800	57,00	4,00	16,00	21,00	0,30	2,80	4	•
4,005	4,000	6,000	3,800	57,00	4,00	16,00	21,00	0,50	2,80	4	•
5,003	5,000	6,000	4,800	57,00	5,00	18,00	21,00	0,30	1,40	4	•
5,005	5,000	6,000	4,800	57,00	5,00	18,00	21,00	0,50	1,40	4	•
6,003	6,000	6,000	5,700	57,00	6,00	20,00	21,00	0,30	-	4	•
6,005	6,000	6,000	5,700	57,00	6,00	20,00	21,00	0,50	-	4	•
6,010	6,000	6,000	5,700	57,00	6,00	20,00	21,00	1,00	-	4	•
6,015	6,000	6,000	5,700	57,00	6,00	20,00	21,00	1,50	-	4	•
8,005	8,000	8,000	7,700	63,00	8,00	26,00	27,00	0,50	-	4	•
8,010	8,000	8,000	7,700	63,00	8,00	26,00	27,00	1,00	-	4	•
8,015	8,000	8,000	7,700	63,00	8,00	26,00	27,00	1,50	-	4	•
8,020	8,000	8,000	7,700	63,00	8,00	26,00	27,00	2,00	-	4	•
10,005	10,000	10,000	9,500	72,00	10,00	30,00	32,00	0,50	-	4	
10,010	10,000	10,000	9,500	72,00	10,00	30,00	32,00	1,00	-	4	•
10,015	10,000	10,000	9,500	72,00	10,00	30,00	32,00	1,50	-	4	•
10,020	10,000	10,000	9,500	72,00	10,00	30,00	32,00	2,00	-	4	•
12,005	12,000	12,000	11,500	83,00	12,00	36,00	38,00	0,50	-	4	•
12,010	12,000	12,000	11,500	83,00	12,00	36,00	38,00	1,00	-	4	•
12,015	12,000	12,000	11,500	83,00	12,00	36,00	38,00	1,50	-	4	
12,020	12,000	12,000	11,500	83,00	12,00	36,00	38,00	2,00	-	4	•
16,020	16,000	16,000	15,500	92,00	16,00	42,00	44,00	2,00	-	4	•
16,030	16,000	16,000	15,500	92,00	16,00	42,00	44,00	3,00	-	4	•

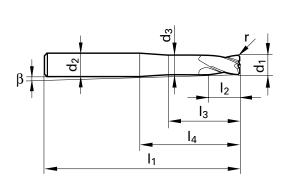
ISO Code	Härte	Schnitttiefe*	Schnittbr.**	Schnittgeschw.			fz	(mm/z) ł	oei Nenn	-Ø		
130 Code	пане	a _p	a _e	v _c	2	3	4	6	8	10	12	16
Р	≤ 850 N/mm ²	-	-	-	-	-	-	-	-	-	-	-
Stahl	850 - 1400 N/mm ²	0,2xd	0,5xd	200	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
K Guss	≥ 240 HB 30	0,2xd	0,5xd	200	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
H Gehärteter	≤ 54 HRC	0,1xd	0,5xd	140	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
Stahl	≤ 63 HRC	0,05xd	0,3xd	80	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1

^{*} Für optimale Spanabfuhr und Standweg ist Trockenbearbeitung mit Luftkühlung empfohlen.

^{**} Beim HSC-Kopierfräsen und imachining mit $a_e = 0.1xd$ kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden.

mit Zentrumschnitt





	-14 1-0	-10 1-0	-10	14	10	10	14		0	7	
Code-Nr.	d1 h8	d2 h6	d3	l1	12	13	14	r	β	Z	Verfügbarkeit
Odde Mi.	mm	mm	mm	mm	mm	mm	mm	mm	0		Vortugbarkon
3,003	3,000	6,000	2,800	80,00	3,50	14,00	40,00	0,30	2,20	4	•
3,005	3,000	6,000	2,800	80,00	3,50	14,00	40,00	0,50	2,20	4	•
4,003	4,000	6,000	3,800	80,00	4,00	16,00	40,00	0,30	1,50	4	•
4,005	4,000	6,000	3,800	80,00	4,00	16,00	40,00	0,50	1,50	4	•
5,003	5,000	6,000	4,800	80,00	5,00	18,00	40,00	0,30	0,80	4	•
5,005	5,000	6,000	4,800	80,00	5,00	18,00	40,00	0,50	0,80	4	•
6,003	6,000	6,000	5,700	80,00	6,00	39,00	40,00	0,30	-	4	•
6,005	6,000	6,000	5,700	80,00	6,00	39,00	40,00	0,50	-	4	•
6,010	6,000	6,000	5,700	80,00	6,00	39,00	40,00	1,00	-	4	•
6,015	6,000	6,000	5,700	80,00	6,00	39,00	40,00	1,50	-	4	•
8,005	8,000	8,000	7,700	100,00	8,00	59,00	60,00	0,50	-	4	•
8,010	8,000	8,000	7,700	100,00	8,00	59,00	60,00	1,00	-	4	•
8,015	8,000	8,000	7,700	100,00	8,00	59,00	60,00	1,50	-	4	•
8,020	8,000	8,000	7,700	100,00	8,00	59,00	60,00	2,00	-	4	•
10,005	10,000	10,000	9,500	120,00	10,00	73,00	75,00	0,50	-	4	•
10,010	10,000	10,000	9,500	120,00	10,00	73,00	75,00	1,00	-	4	•
10,015	10,000	10,000	9,500	120,00	10,00	73,00	75,00	1,50	-	4	•
10,020	10,000	10,000	9,500	120,00	10,00	73,00	75,00	2,00	-	4	•
12,005	12,000	12,000	11,500	120,00	12,00	68,00	70,00	0,50	-	4	•
12,010	12,000	12,000	11,500	120,00	12,00	68,00	70,00	1,00	-	4	•
12,015	12,000	12,000	11,500	120,00	12,00	68,00	70,00	1,50	-	4	•
12,020	12,000	12,000	11,500	120,00	12,00	68,00	70,00	2,00	-	4	•
16,020	16,000	16,000	15,500	150,00	16,00	98,00	100,00	2,00	-	4	•
16,030	16,000	16,000	15,500	150,00	16,00	98,00	100,00	3,00	-	4	•

ISO Code	Härte	Schnitttiefe*	Schnittbr.**	Schnittgeschw.			fz	(mm/z) ł	oei Nenn	-Ø		
130 Code	пане	a _p	a _e	v _c	2	3	4	6	8	10	12	16
Р	≤ 850 N/mm ²	-	-	-	-	-	-	-	-	-	-	-
Stahl	850 - 1400 N/mm ²	0,2xd	0,5xd	200	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
K Guss	≥ 240 HB 30	0,2xd	0,5xd	200	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
H Gehärteter	≤ 54 HRC	0,1xd	0,5xd	140	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
Stahl	≤ 63 HRC	0,05xd	0,3xd	80	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1

^{*} Für optimale Spanabfuhr und Standweg ist Trockenbearbeitung mit Luftkühlung empfohlen.

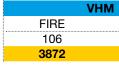
^{**} Beim HSC-Kopierfräsen und imachining mit $a_e = 0.1xd$ kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden.

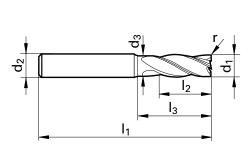
Ratiofräser Standard RF 100 U

mit Zentrumschnitt

106

3873





Codo Nr	d1 h10	d2 h6	d3	I1	12	13	r	Z	Vorfügbarkoit
Code-Nr.	mm	mm	mm	mm	mm	mm	mm		Verfügbarkeit
6,005	6,000	6,000	5,700	57,00	13,00	20,00	0,50	4	•
6,010	6,000	6,000	5,700	57,00	13,00	20,00	1,00	4	•
6,020	6,000	6,000	5,700	57,00	13,00	20,00	2,00	4	•
8,005	8,000	8,000	7,700	63,00	19,00	26,00	0,50	4	•
8,010	8,000	8,000	7,700	63,00	19,00	26,00	1,00	4	•
8,020	8,000	8,000	7,700	63,00	19,00	26,00	2,00	4	•
10,005	10,000	10,000	9,500	72,00	22,00	30,00	0,50	4	•
10,010	10,000	10,000	9,500	72,00	22,00	30,00	1,00	4	•
10,020	10,000	10,000	9,500	72,00	22,00	30,00	2,00	4	•
12,005	12,000	12,000	11,500	83,00	26,00	36,00	0,50	4	•
12,010	12,000	12,000	11,500	83,00	26,00	36,00	1,00	4	•
12,020	12,000	12,000	11,500	83,00	26,00	36,00	2,00	4	• •
16,005	16,000	16,000	15,500	92,00	32,00	42,00	0,50	4	•
16,010	16,000	16,000	15,500	92,00	32,00	42,00	1,00	4	• •
16,020	16,000	16,000	15,500	92,00	32,00	42,00	2,00	4	•
16,030	16,000	16,000	15,500	92,00	32,00	42,00	3,00	4	• •
20,005	20,000	20,000	19,500	104,00	38,00	52,00	0,50	4	•
20,010	20,000	20,000	19,500	104,00	38,00	52,00	1,00	4	•
20,020	20,000	20,000	19,500	104,00	38,00	52,00	2,00	4	•
20,030	20,000	20,000	19,500	104,00	38,00	52,00	3,00	4	•
25,020	25,000	25,000	24,000	121,00	45,00	63,00	2,00	4	•
25,030	25,000	25,000	24,000	121,00	45,00	63,00	3,00	4	•

Schnittwerte: HPC-Schruppen*

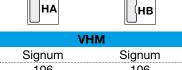
•••••		PP										
ISO Code	Härte	Schnitttiefe	Schnittbreite**	Schnittgeschw.			fz (mm/z) k	oei Neni	n-Ø		
130 Code	naite	a _p	a _e	v _c	3	6	8	10	12	16	20	25
Р	≤ 850 N/mm ²	2xd	0,3xd	200	0,02	0,04	0,055	0,07	0,085	0,1	0,12	0,17
Stahl	850 - 1400 N/mm ²	2xd	0,3xd	180	0,02	0,04	0,055	0,07	0,085	0,1	0,12	0,17
K Guss	≥ 240 HB 30	2xd	0,4xd	180	0,02	0,04	0,05	0,065	0,08	0,095	0,11	0,16

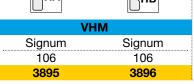
^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" empfohlen.

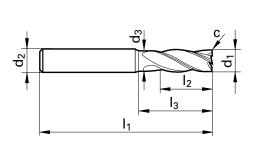
^{**} Beim Trochoidalfräsen und imachining mit $a_e = 0,1-0,2xd$ kann die Schnittgeschwindigkeit v_c und Vorschub um je 50 % erhöht werden.

Ratiofräser RF 100 H

mit Zentrumschnitt







Code-Nr.	d1 h10	d2 h6	d3	I1	12	13	С	Z
Code-IVI.	mm	mm	mm	mm	mm	mm	mm x 45°	
6,000	6,000	6,000	5,700	57,00	13,00	20,00	0,15	4
8,000	8,000	8,000	7,700	63,00	19,00	26,00	0,15	4
10,000	10,000	10,000	9,500	72,00	22,00	30,00	0,20	4
12,000	12,000	12,000	11,500	83,00	26,00	36,00	0,20	4
16,000	16,000	16,000	15,500	92,00	32,00	42,00	0,35	4
20,000	20,000	20,000	19,500	104,00	38,00	52,00	0,45	4

_	-	
-	Verfüg	barkeit
	•	
	·	·

Schnittwerte: HPC-Schruppen* und Hart-Schlichten

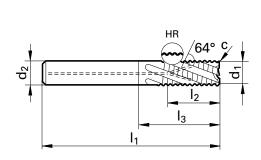
ISO Code	Härte	Schnitttiefe	Schnittbr.**	Schnittgeschw.			fz (mn	n/z) bei N	enn-Ø		
130 Code	папе	a _p	a _e	v _c	3	6	8	10	12	16	20
Р	≤ 850 N/mm ²	-	-	-	-	-	-	-	-	-	-
Stahl	850 - 1400 N/mm ²	1xd	-	140	0,02	0,04	0,05	0,065	0,08	0,095	0,11
K Guss	≥ 240 HB 30	1xd	0,5xd	130	0,014	0,027	0,036	0,05	0,059	0,072	0,086
H Gehärteter	≤ 54 HRC	1xD	0,15xD	110	0,015	0,03	0,04	0,05	0,06	0,07	0,09
Stahl	≤ 63 HRC	2xD	0,03xD	80	0,01	0,015	0,025	0,035	0,042	0,05	0,08

^{*} Für optimale Spanabfuhr und Standweg ist Lüftkühlung empfohlen.

^{**} Beim Nuten (bis 54 HRC) sind die Schnittgeschwindigkeiten und Vorschübe um 30 % zu reduzieren.

Hart-Schruppfräser GS 100 H (feinverzahnt)

mit Zentrumschnitt



Schneidstoff Oberfläche Rabattgruppe Artikel-Nr.

1	VHM
Signum	Signum
106	106
6704	6705

Codo Nr	d1 h10	d2 h6	l1	12	13	С	Z
Code-Nr.	mm	mm	mm	mm	mm	mm x 45°	
6,000	6,000	6,000	57,00	13,00	21,00	0,30	4
8,000	8,000	8,000	63,00	19,00	27,00	0,30	4
10,000	10,000	10,000	72,00	22,00	32,00	0,30	4
12,000	12,000	12,000	83,00	26,00	38,00	0,50	4
16,000	16,000	16,000	92,00	32,00	44,00	0,50	4
20,000	20,000	20,000	104,00	38,00	54,00	0,50	4
25,000	25,000	25,000	121,00	45,00	65,00	0,60	4

Verfüg	barkeit	
•	•	
•	•	

Schnittwerte: HPC-Schruppen*

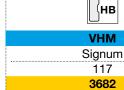
ISO Code	Härte	Schnitttiefe*	Schnittbr.** a _e	Schnittgeschw.	6	8	10	12	16	20	25
Р	≤ 850 N/mm ²	-	-	-	-	-	-	-	-	-	-
Stahl	850 - 1400 N/mm²	1,5xd	0,4xd	130	0,016	0,032	0,041	0,054	0,063	0,081	0,09
K Guss	≥ 240 HB 30	2xd	0,5xd	130	0,016	0,032	0,041	0,054	0,063	0,081	0,09
H	≤ 54 HRC	1,5xd	0,25xd	90	0,014	0,022	0,027	0,036	0,045	0,054	0,063
Gehärteter Stahl	≤ 63 HRC	-	-	-	-	-	-	-	-	-	-

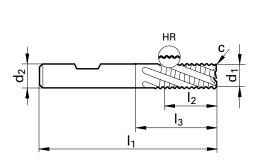
^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" empfohlen.

^{**} Beim Nuten sind die Schnittgeschwindigkeiten und Vorschübe um 30 % zu reduzieren.

Hart-Schruppfräser GS 100 H (feinverzahnt)

mit Zentrumschnitt





Code-Nr.	d1 h10	d2 h6	I1	12	13	С	Z
Code-Ivi.	mm	mm	mm	mm	mm	mm x 45°	
6,000	6,000	6,000	57,00	13,00	21,00	0,30	4
8,000	8,000	8,000	63,00	19,00	27,00	0,30	4
10,000	10,000	10,000	72,00	22,00	32,00	0,30	4
12,000	12,000	12,000	83,00	26,00	38,00	0,50	4
16,000	16,000	16,000	92,00	32,00	44,00	0,50	4
20,000	20,000	20,000	104,00	38,00	54,00	0,50	4

Verfügbarkeit
•

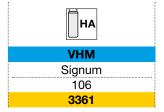
Schnittwerte: HPC-Schruppen*

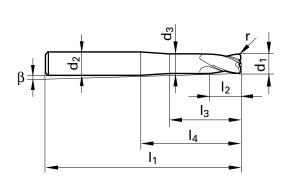
00	ie. iii O-Ociiiu	spon.									
ISO Code	Härte	Schnitttiefe* a _p	Schnittbr.** a _e		6	8	10	12	16	20	25
P	≤ 850 N/mm ²	-	-	-	-	-	-	-	-	-	-
Stahl	850 - 1400 N/mm ²	1,5xd	0,4xd	130	0,016	0,032	0,041	0,054	0,063	0,081	0,09
K Guss	≥ 240 HB 30	2xd	0,5xd	130	0,016	0,032	0,041	0,054	0,063	0,081	0,09
H	≤ 54 HRC	1,5xd	0,25xd	90	0,014	0,022	0,027	0,036	0,045	0,054	0,063
Gehärteter Stahl	≤ 63 HRC	-	-	-	-	-	-	-	-	-	-

^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" empfohlen.

^{**} Beim Nuten sind die Schnittgeschwindigkeiten und Vorschübe um 30 % zu reduzieren.

mit Zentrumschnitt





Schneidstoff Oberfläche Rabattgruppe Artikel-Nr.

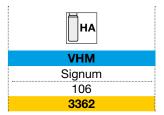
Code-Nr.	d1 h8	d2 h6	d3	l1	12	13	14	r	β	Z	Verfügbarkeit
Code-M.	mm	mm	mm	mm	mm	mm	mm	mm	0		veriugbarkeit
0,501	0,500	4,000	0,480	50,00	1,00	3,00	22,00	0,10	4,60	2	•
1,002	1,000	4,000	0,950	50,00	2,00	6,00	22,00	0,20	4,00	2	•
2,002	2,000	6,000	1,900	57,00	3,00	10,00	21,00	0,20	5,50	2	•
2,005	2,000	6,000	1,900	57,00	3,00	10,00	21,00	0,50	5,60	2	•
3,000	3,000	6,000	2,800	57,00	5,00	10,00	21,00	0,50	4,20	4	•
3,003	3,000	6,000	2,800	57,00	5,00	10,00	21,00	0,30	4,20	4	•
4,000	4,000	6,000	3,800	57,00	6,00	13,40	21,00	0,50	2,80	4	•
4,003	4,000	6,000	3,800	57,00	6,00	13,40	21,00	0,30	2,80	4	•
5,000	5,000	6,000	4,800	57,00	8,00	15,90	21,00	0,50	1,40	4	•
5,003	5,000	6,000	4,800	57,00	8,00	15,90	21,00	0,30	1,40	4	•
6,000	6,000	6,000	5,700	57,00	9,00	20,00	21,00	1,00	-	4	•
6,003	6,000	6,000	5,700	57,00	9,00	20,00	21,00	0,30	-	4	•
6,005	6,000	6,000	5,700	57,00	9,00	20,00	21,00	0,50	-	4	•
6,015	6,000	6,000	5,700	57,00	9,00	20,00	21,00	1,50	-	4	•
8,000	8,000	8,000	7,700	63,00	12,00	26,00	27,00	1,00	-	4	•
8,005	8,000	8,000	7,700	63,00	12,00	26,00	27,00	0,50	-	4	•
8,015	8,000	8,000	7,700	63,00	12,00	26,00	27,00	1,50	-	4	•
8,020	8,000	8,000	7,700	63,00	12,00	26,00	27,00	2,00	-	4	•
10,000	10,000	10,000	9,500	72,00	15,00	30,00	32,00	1,50	-	4	•
10,005	10,000	10,000	9,500	72,00	15,00	30,00	32,00	0,50	-	4	•
10,010	10,000	10,000	9,500	72,00	15,00	30,00	32,00	1,00	-	4	•
10,020	10,000	10,000	9,500	72,00	15,00	30,00	32,00	2,00	-	4	•
12,000	12,000	12,000	11,500	83,00	18,00	36,00	38,00	1,50	-	4	•
12,005	12,000	12,000	11,500	83,00	18,00	36,00	38,00	0,50	-	4	•
12,010	12,000	12,000	11,500	83,00	18,00	36,00	38,00	1,00	-	4	•
12,020	12,000	12,000	11,500	83,00	18,00	36,00	38,00	2,00	-	4	•
16,000	16,000	16,000	15,500	92,00	24,00	42,00	44,00	2,00	-	4	
16,030	16,000	16,000	15,500	92,00	24,00	42,00	44,00	3,00	-	4	•

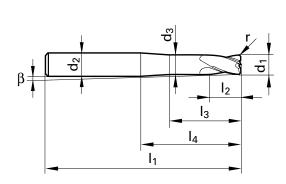
	ie. HFO-Schlup	•	fz (mm/z) bei Nenn-Ø									
ISO Code	Härte	Schnitttiefe*	Schnittbr.**	Schnittgeschw.			12	(111111/2) 1	ei Neilli			
		ap	a _e	Vc	2	3	4	6	8	10	12	16
P	≤ 850 N/mm ²	-	-	-	-	-	-	-	-	-	-	-
Stahl	850 - 1400 N/mm ²	0,2xd	0,5xd	200	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
K Guss	≥ 240 HB 30	0,2xd	0,5xd	200	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
H Gehärteter	≤ 54 HRC	0,1xd	0,5xd	140	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
Stahl	≤ 63 HRC	0,05xd	0,3xd	80	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1

^{*} Für optimale Spanabfuhr und Standweg ist Trockenbearbeitung mit Luftkühlung empfohlen.

^{**} Beim HSC-Kopierfräsen und imachining mit $a_e = 0.1xd$ kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden.

mit Zentrumschnitt





Schneidstoff Oberfläche Rabattgruppe Artikel-Nr.

Code-Nr.												
mm	Code-Nr	d1 h8	d2 h6	d3	l1	12	13	14	r	β	Z	Verfügharkeit
1,002 1,000 4,000 0,950 50,00 2,00 12,00 0,20 0,20 4,40 2 2,000 2,000 6,000 1,900 75,00 3,00 18,00 39,00 0,20 3,00 2 3,003 3,000 6,000 2,800 75,00 5,00 25,00 39,00 0,30 2,30 4 3,003 3,000 6,000 2,800 75,00 5,00 25,00 39,00 0,50 2,30 4 4,003 4,000 6,000 3,800 75,00 6,00 32,00 39,00 0,50 2,30 4 4,003 4,000 6,000 3,800 75,00 6,00 32,00 39,00 0,50 1,50 4 4,005 4,000 6,000 4,800 75,00 8,00 32,00 39,00 0,50 1,50 4 5,003 5,000 6,000 4,800 75,00 8,00 38,00 39,00 0,50 1,50 4 5,003 5,000 6,000 4,800 75,00 8,00 38,00 39,00 0,50 1,50 4 5,003 5,000 6,000 5,700 75,00 9,00 38,00 39,00 0,50 0,80 4 6,000 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,50 0,80 4 6,000 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,50 0,80 4 6,005 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,30 - 4 6,005 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,50 - 4 6,015 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,50 - 4 6,015 6,000 6,000 7,700 100,00 12,00 63,00 64,00 1,00 - 4 8,005 8,000 8,000 7,700 100,00 12,00 63,00 64,00 1,00 - 4 8,005 8,000 8,000 7,700 100,00 12,00 63,00 64,00 1,50 - 4 8,015 8,000 8,000 7,700 100,00 12,00 63,00 64,00 1,50 - 4 10,000 10,000 10,000 9,500 100,00 15,00 58,00 60,00 1,50 - 4 10,005 10,000 10,000 9,500 100,00 15,00 58,00 60,00 1,50 - 4 10,005 10,000 10,000 9,500 100,00 15,00 58,00 60,00 1,50 - 4 10,005 12,000 12,000 11,500 150,00 18,00 103,00 105,00 1,50 - 4 12,000 12,000 12,000 11,500 150,00 18,00 103,00 105,00 1,50 - 4 12,000 12,000 12,000 11,500 150,00 18,00 103,00 105,00 1,50 - 4 12,000 12,000 12,000 11,500 150,00 18,00 103,00 105,00 1,50 - 4 16,000 16,000 15,500 150,00 18,00 103,00 105,00 1,50 - 4 16,000 16,000 15,500 150,00 18,00 103,00 105,00 1,50 - 4 16,000 16,000 15,500 150,00 18,00 103,00 105,00 1,50 - 4 16,000 16,000 15,500 150,00 18,00 103,00 105,00 2,00 - 4 16,000 16,000 15,500 150,00 18,00 103,00 105,00 2,00 - 4 16,000 16,000 15,500 150,00 18,00 103,00 105,00 2,00 - 4	Oode-IVI.	mm	mm	mm	mm	mm	mm	mm	mm	0		Verlügbarkeit
2,002 2,000 6,000 1,900 75,00 3,00 18,00 39,00 0,50 3,00 2 2,005 2,000 6,000 1,900 75,00 3,00 18,00 39,00 0,50 3,00 2 3,003 3,000 6,000 2,800 75,00 5,00 25,00 39,00 0,50 2,30 4 4,003 4,000 6,000 3,800 75,00 6,00 32,00 39,00 0,50 2,30 4 4,003 4,000 6,000 3,800 75,00 6,00 32,00 39,00 0,50 2,30 4 4,003 4,000 6,000 3,800 75,00 6,00 32,00 39,00 0,50 1,50 4 4,003 5,000 6,000 4,800 75,00 8,00 38,00 39,00 0,50 1,50 4 5,005 5,000 6,000 5,700 75,00 9,00 38,00 39,00 0,50 0,80 4 6,005 6,000 6,000 5,700 <td>0,501</td> <td>0,500</td> <td>4,000</td> <td>0,480</td> <td>50,00</td> <td>1,00</td> <td>6,00</td> <td>20,00</td> <td>0,10</td> <td>5,10</td> <td>2</td> <td>•</td>	0,501	0,500	4,000	0,480	50,00	1,00	6,00	20,00	0,10	5,10	2	•
2,005	1,002	1,000	4,000	0,950	50,00	2,00	12,00	20,00	0,20	4,40	2	•
3,003 3,000 6,000 2,800 75,00 5,00 25,00 39,00 0,30 2,30 4 4,003 4,000 6,000 3,800 75,00 6,00 32,00 39,00 0,50 2,30 4 4,003 4,000 6,000 3,800 75,00 6,00 32,00 39,00 0,50 1,50 4 4,005 4,000 6,000 4,800 75,00 8,00 32,00 39,00 0,50 1,50 4 5,003 5,000 6,000 4,800 75,00 8,00 38,00 39,00 0,50 1,50 4 5,003 5,000 6,000 4,800 75,00 8,00 38,00 39,00 0,50 0,80 4 5,005 5,000 6,000 5,700 75,00 9,00 38,00 39,00 0,50 0,80 4 6,000 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,50 0,80 4 6,003 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,50 - 4 6,015 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,50 - 4 6,015 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,50 - 4 8,000 8,000 8,000 7,700 100,00 12,00 63,00 64,00 1,00 - 4 8,005 8,000 8,000 7,700 100,00 12,00 63,00 64,00 1,00 - 4 8,015 8,000 8,000 7,700 100,00 12,00 63,00 64,00 1,50 - 4 8,020 8,000 8,000 7,700 100,00 12,00 63,00 64,00 1,50 - 4 10,000 10,000 10,000 9,500 100,00 15,00 58,00 60,00 1,50 - 4 10,000 10,000 10,000 9,500 100,00 15,00 58,00 60,00 1,50 - 4 10,020 10,000 10,000 9,500 100,00 15,00 58,00 60,00 1,50 - 4 112,000 12,000 12,000 11,500 150,00 18,00 103,00 105,00 1,50 - 4 112,000 12,000 12,000 11,500 150,00 18,00 103,00 105,00 1,50 - 4 112,000 12,000 12,000 11,500 150,00 18,00 103,00 105,00 2,00 - 4 116,000 16,000 15,000 15,00 150,00 18,00 103,00 105,00 2,00 - 4 116,000 16,000 15,000 15,00 150,00 18,00 103,00 105,00 2,00 - 4 116,000 16,000 15,000 15,00 150,00 18,00 103,00 105,00 2,00 - 4 116,000 16,000 15,000 15,00 150,00 18,00 103,00 105,00 2,00 - 4 116,000 16,000 15,000 15,00 150,00 18,00 103,00 105,00 2,00 - 4 116,000 16,000 15,500 150,00 18,00 103,00 105,00 2,00 - 4	2,002	2,000	6,000	1,900	75,00	3,00	18,00	39,00	0,20	3,00	2	•
3,005 3,000 6,000 2,800 75,00 5,00 25,00 39,00 0,50 2,30 4 4,003 4,000 6,000 3,800 75,00 6,00 32,00 39,00 0,30 1,50 4 4,005 4,000 6,000 3,800 75,00 6,00 32,00 39,00 0,50 1,50 4 5,003 5,000 6,000 4,800 75,00 8,00 38,00 39,00 0,50 0,80 4 5,005 5,000 6,000 4,800 75,00 8,00 38,00 39,00 0,50 0,80 4 6,000 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,30 - 4 6,003 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,30 - 4 6,005 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,50 - 4 6,015 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,50 - 4 6,015 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,50 - 4 8,000 8,000 8,000 7,700 100,00 12,00 63,00 64,00 1,50 - 4 8,005 8,000 8,000 7,700 100,00 12,00 63,00 64,00 1,50 - 4 8,015 8,000 8,000 7,700 100,00 12,00 63,00 64,00 1,50 - 4 8,015 8,000 8,000 7,700 100,00 12,00 63,00 64,00 1,50 - 4 8,015 8,000 8,000 7,700 100,00 12,00 63,00 64,00 1,50 - 4 8,015 8,000 8,000 7,700 100,00 12,00 63,00 64,00 1,50 - 4 8,015 8,000 8,000 7,700 100,00 12,00 63,00 64,00 1,50 - 4 8,015 8,000 8,000 7,700 100,00 15,00 58,00 60,00 1,50 - 4 8,015 8,000 8,000 7,700 100,00 15,00 58,00 60,00 1,50 - 4 8,015 8,000 8,000 7,700 100,00 15,00 58,00 60,00 0,50 - 4 9,015 10,000 10,000 9,500 100,00 15,00 58,00 60,00 0,50 - 4 9,016 10,000 10,000 9,500 100,00 15,00 58,00 60,00 0,50 - 4 9,016 10,000 10,000 9,500 100,00 15,00 58,00 60,00 0,50 - 4 9,016 10,000 10,000 9,500 100,00 15,00 58,00 60,00 0,50 - 4 9,016 10,000 10,000 10,000 15,00 15,00 150,00 18,00 105,00 105,00 1,50 - 4 9,016 10,000 12,000 11,500 150,00 18,00 103,00 105,00 1,50 - 4 9,016 10,000 12,000 11,500 150,00 18,00 103,00 105,00 100,00 - 4 9,016 10,000 12,000 11,500 150,00 18,00 103,00 105,00 100,00 - 4 9,016 10,000 16,000 15,500 150,00 18,00 103,00 105,00 100,00 - 4	2,005	2,000	6,000	1,900	75,00	3,00	18,00	39,00	0,50	3,00	2	•
4,003 4,000 6,000 3,800 75,00 6,00 32,00 39,00 0,30 1,50 4 4,005 4,000 6,000 3,800 75,00 6,00 32,00 39,00 0,50 1,50 4 5,003 5,000 6,000 4,800 75,00 8,00 38,00 39,00 0,50 0,80 4 6,000 6,000 6,000 5,700 75,00 8,00 38,00 39,00 0,50 0,80 4 6,003 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,30 - 4 6,003 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,50 - 4 6,015 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,50 - 4 6,015 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,50 - 4 6,015 6,000 6,000 5,700 <td< td=""><td>3,003</td><td>3,000</td><td>6,000</td><td>2,800</td><td>75,00</td><td>5,00</td><td>25,00</td><td>39,00</td><td>0,30</td><td>2,30</td><td>4</td><td>•</td></td<>	3,003	3,000	6,000	2,800	75,00	5,00	25,00	39,00	0,30	2,30	4	•
4,005 4,000 6,000 3,800 75,00 6,00 32,00 39,00 0,50 1,50 4 5,003 5,000 6,000 4,800 75,00 8,00 38,00 39,00 0,30 0,80 4 6,000 6,000 6,000 5,700 75,00 9,00 38,00 39,00 1,00 - 4 6,003 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,30 - 4 6,003 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,50 - 4 6,015 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,50 - 4 6,015 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,50 - 4 8,005 8,000 8,000 7,700 100,00 12,00 63,00 64,00 1,50 - 4 8,015 8,000 8,000 7,700 100	3,005	3,000	6,000	2,800	75,00	5,00	25,00	39,00	0,50	2,30	4	•
5,003 5,000 6,000 4,800 75,00 8,00 38,00 39,00 0,30 0,80 4 5,005 5,000 6,000 4,800 75,00 8,00 38,00 39,00 0,50 0,80 4 6,000 6,000 5,700 75,00 9,00 38,00 39,00 1,00 - 4 6,005 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,50 - 4 6,015 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,50 - 4 6,015 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,50 - 4 6,015 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,50 - 4 6,015 6,000 8,000 7,700 100,00 12,00 63,00 64,00 1,50 - 4 8,015 8,000 8,000 7,700 100,00 12				3,800	75,00		32,00	39,00	0,30		4	•
5,005 5,000 6,000 4,800 75,00 8,00 38,00 39,00 0,50 0,80 4 6,000 6,000 5,700 75,00 9,00 38,00 39,00 1,00 - 4 6,003 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,50 - 4 6,015 6,000 6,000 5,700 75,00 9,00 38,00 39,00 1,50 - 4 6,015 6,000 6,000 5,700 75,00 9,00 38,00 39,00 1,50 - 4 6,015 6,000 6,000 5,700 75,00 9,00 38,00 39,00 1,50 - 4 8,000 8,000 7,700 100,00 12,00 63,00 64,00 1,00 - 4 8,015 8,000 8,000 7,700 100,00 12,00 63,00 64,00 1,50 - 4 8,020 8,000 8,000 7,700 100,00 15,00 58,	4,005	4,000	6,000	3,800	75,00	6,00	32,00	39,00	0,50	1,50	4	•
6,000 6,000 6,000 5,700 75,00 9,00 38,00 39,00 1,00 - 4 6,003 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,30 - 4 6,005 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,50 - 4 6,015 6,000 6,000 5,700 75,00 9,00 38,00 39,00 1,50 - 4 8,000 8,000 8,000 7,700 100,000 12,00 63,00 64,00 1,00 - 4 8,005 8,000 8,000 7,700 100,00 12,00 63,00 64,00 1,50 - 4 8,015 8,000 8,000 7,700 100,00 12,00 63,00 64,00 1,50 - 4 8,020 8,000 7,700 100,00 12,00 63,00 64,00 2,00 - 4 10,000 10,000 9,500 100,00 15,00 58,00 60,00 1,50 - 4 10,005 10,000 10,000 9,500 100,00 15,00 58,00 60,00 1,50 - 4 10,005 10,000 10,000 9,500 100,00 15,00 58,00 60,00 1,50 - 4 10,020 10,000 10,000 9,500 100,00 15,00 58,00 60,00 1,00 - 4 12,000 12,000 12,000 11,500 58,00 60,00 1,00 - 4 12,000 12,000 12,000 11,500 15,00 58,00 60,00 1,00 - 4 12,000 12,000 12,000 11,500 15,00 15,00 58,00 60,00 2,00 - 4 12,000 12,000 12,000 11,500 15,00 18,00 103,00 105,00 1,50 - 4 12,000 12,000 12,000 11,500 150,00 18,00 103,00 105,00 1,50 - 4 12,000 12,000 12,000 11,500 150,00 18,00 103,00 105,00 1,50 - 4 12,000 12,000 12,000 11,500 150,00 18,00 103,00 105,00 1,50 - 4 12,000 12,000 12,000 11,500 150,00 18,00 103,00 105,00 1,50 - 4 12,000 12,000 12,000 11,500 150,00 18,00 103,00 105,00 1,50 - 4 12,000 12,000 12,000 11,500 150,00 18,00 103,00 105,00 1,50 - 4 12,000 12,000 12,000 11,500 150,00 18,00 103,00 105,00 2,00 - 4 12,000 12,000 11,500 150,00 18,00 103,00 105,00 2,00 - 4 12,000 12,000 11,500 150,00 150,00 103,00 105,00 2,00 - 4 12,000 12,000 11,500 150,00 150,00 103,00 105,00 2,00 - 4 16,000 16,000 15,500 150,00 150,00 100,00 100,00 100,00 2,00 - 4	5,003	5,000	6,000	4,800	75,00	8,00	38,00	39,00	0,30		4	•
6,003 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,30 - 4 6,005 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,50 - 4 6,015 6,000 6,000 5,700 75,00 9,00 38,00 39,00 1,50 - 4 8,000 8,000 8,000 7,700 100,00 12,00 63,00 64,00 1,00 - 4 8,005 8,000 8,000 7,700 100,00 12,00 63,00 64,00 1,50 - 4 8,015 8,000 8,000 7,700 100,00 12,00 63,00 64,00 1,50 - 4 8,020 8,000 8,000 7,700 100,00 12,00 63,00 64,00 2,00 - 4 10,000 10,000 10,000 9,500 100,00 15,00 58,00 60,00 1,50 - 4 10,005 10,000 10,000 9,500 100,00 15,00 58,00 60,00 1,50 - 4 10,005 10,000 10,000 9,500 100,00 15,00 58,00 60,00 0,50 - 4 10,000 10,000 9,500 100,00 15,00 58,00 60,00 1,00 - 4 10,000 10,000 9,500 100,00 15,00 58,00 60,00 1,00 - 4 12,000 12,000 11,500 150,00 18,00 103,00 105,00 2,00 - 4 12,000 12,000 11,500 150,00 18,00 103,00 105,00 1,50 - 4 12,000 12,000 12,000 11,500 150,00 18,00 103,00 105,00 1,50 - 4 12,000 12,000 12,000 11,500 150,00 18,00 103,00 105,00 1,50 - 4 12,000 12,000 12,000 11,500 150,00 18,00 103,00 105,00 1,50 - 4 12,000 12,000 12,000 11,500 150,00 18,00 103,00 105,00 1,50 - 4 12,000 12,000 12,000 11,500 150,00 18,00 103,00 105,00 2,00 - 4 12,000 12,000 12,000 11,500 150,00 18,00 103,00 105,00 2,00 - 4 12,000 12,000 11,500 150,00 18,00 103,00 105,00 2,00 - 4 12,000 12,000 12,000 15,000 150,00 18,00 103,00 105,00 2,00 - 4 12,000 12,000 12,000 15,500 150,00 18,00 103,00 105,00 2,00 - 4 12,000 12,000 15,500 150,00 150,00 100,00			6,000	4,800			38,00			0,80	4	•
6,005 6,000 6,000 5,700 75,00 9,00 38,00 39,00 0,50 - 4 6,015 6,000 6,000 5,700 75,00 9,00 38,00 39,00 1,50 - 4 8,000 8,000 7,700 100,00 12,00 63,00 64,00 1,00 - 4 8,015 8,000 8,000 7,700 100,00 12,00 63,00 64,00 1,50 - 4 8,020 8,000 8,000 7,700 100,00 12,00 63,00 64,00 1,50 - 4 8,020 8,000 8,000 7,700 100,00 12,00 63,00 64,00 2,00 - 4 10,000 10,000 10,000 15,00 58,00 60,00 1,50 - 4 10,010 10,000 10,000 15,00 58,00 60,00 1,00 - 4 10,020 10,000 10,000 15,00 58,00 60,00 2,00 - 4				5,700	75,00		38,00	39,00		-	4	•
6,015 6,000 6,000 5,700 75,00 9,00 38,00 39,00 1,50 - 4 8,000 8,000 7,700 100,00 12,00 63,00 64,00 1,00 - 4 8,005 8,000 8,000 7,700 100,00 12,00 63,00 64,00 0,50 - 4 8,015 8,000 8,000 7,700 100,00 12,00 63,00 64,00 1,50 - 4 8,020 8,000 8,000 7,700 100,00 12,00 63,00 64,00 2,00 - 4 10,000 10,000 10,000 12,00 63,00 64,00 2,00 - 4 10,000 10,000 10,000 15,00 58,00 60,00 1,50 - 4 10,010 10,000 10,000 15,00 58,00 60,00 1,00 - 4 10,020 10,000 10,000 15,00 58,00 60,00 2,00 - 4 12,000 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>39,00</td><td></td><td>-</td><td>4</td><td>•</td></t<>								39,00		-	4	•
8,000 8,000 7,700 100,00 12,00 63,00 64,00 1,00 - 4 8,005 8,000 8,000 7,700 100,00 12,00 63,00 64,00 0,50 - 4 8,015 8,000 8,000 7,700 100,00 12,00 63,00 64,00 1,50 - 4 8,020 8,000 8,000 7,700 100,00 12,00 63,00 64,00 2,00 - 4 10,000 10,000 10,000 15,00 58,00 60,00 1,50 - 4 10,005 10,000 10,000 15,00 58,00 60,00 1,50 - 4 10,010 10,000 10,000 15,00 58,00 60,00 1,00 - 4 10,020 10,000 10,000 15,00 58,00 60,00 1,00 - 4 12,000 12,000 11,500 150,00 18,00 103,00 105,00 1,50 - 4 12,000 12,000	6,005	6,000	6,000		75,00	9,00	38,00	39,00	0,50	-	4	•
8,005 8,000 8,000 7,700 100,00 12,00 63,00 64,00 0,50 - 4 8,015 8,000 8,000 7,700 100,00 12,00 63,00 64,00 1,50 - 4 8,020 8,000 8,000 7,700 100,00 12,00 63,00 64,00 2,00 - 4 10,000 10,000 10,000 15,00 58,00 60,00 1,50 - 4 10,005 10,000 10,000 15,00 58,00 60,00 0,50 - 4 10,010 10,000 10,000 15,00 58,00 60,00 1,00 - 4 10,020 10,000 10,000 15,00 58,00 60,00 1,00 - 4 12,000 12,000 11,500 150,00 58,00 60,00 2,00 - 4 12,000 12,000 11,500 150,00 18,00 103,00 105,00 1,50 - 4 12,001 12,000 11,500 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>4</td> <td>•</td>										-	4	•
8,015 8,000 8,000 7,700 100,000 12,00 63,00 64,00 1,50 - 4 8,020 8,000 8,000 7,700 100,00 12,00 63,00 64,00 2,00 - 4 10,000 10,000 10,000 15,00 58,00 60,00 1,50 - 4 10,005 10,000 10,000 15,00 58,00 60,00 0,50 - 4 10,010 10,000 10,000 15,00 58,00 60,00 1,00 - 4 10,020 10,000 10,000 15,00 58,00 60,00 1,00 - 4 10,020 10,000 10,000 15,00 58,00 60,00 2,00 - 4 12,000 12,000 11,500 150,00 18,00 103,00 105,00 1,50 - 4 12,000 12,000 11,500 150,00 18,00 103,00 105,00 1,00 - 4 12,020 12,000 11,500 15					,					-	4	•
8,020 8,000 8,000 7,700 100,000 12,00 63,00 64,00 2,00 - 4 10,000 10,000 10,000 10,000 15,00 58,00 60,00 1,50 - 4 10,005 10,000 10,000 10,000 15,00 58,00 60,00 0,50 - 4 10,010 10,000 10,000 10,000 15,00 58,00 60,00 1,00 - 4 10,020 10,000 10,000 15,00 58,00 60,00 2,00 - 4 12,000 12,000 11,500 150,00 18,00 103,00 105,00 1,50 - 4 12,005 12,000 11,500 150,00 18,00 103,00 105,00 1,50 - 4 - 12,010 12,000 11,500 150,00 18,00 103,00 105,00 1,00 - 4 - 12,020 12,000 11,500 150,00 18,00 103,00 105,00 2,00 -					,		,			-	4	•
10,000 10,000 10,000 9,500 100,00 15,00 58,00 60,00 1,50 - 4 10,005 10,000 10,000 9,500 100,00 15,00 58,00 60,00 0,50 - 4 10,010 10,000 10,000 10,000 15,00 58,00 60,00 1,00 - 4 10,020 10,000 10,000 15,00 15,00 58,00 60,00 2,00 - 4 12,000 12,000 11,500 150,00 18,00 103,00 105,00 1,50 - 4 12,005 12,000 11,500 150,00 18,00 103,00 105,00 0,50 - 4 - 12,010 12,000 11,500 150,00 18,00 103,00 105,00 1,00 - 4 - 12,020 12,000 11,500 150,00 18,00 103,00 105,00 1,00 - 4 - 12,020 12,000 11,500 150,00 18,00 103,00		,	,	,	,	,	,	,		-	4	•
10,005 10,000 10,000 9,500 100,00 15,00 58,00 60,00 0,50 - 4 • 10,010 10,000 10,000 9,500 100,00 15,00 58,00 60,00 1,00 - 4 • 10,020 10,000 10,000 15,00 15,00 58,00 60,00 2,00 - 4 • 12,000 12,000 11,500 150,00 18,00 103,00 105,00 1,50 - 4 • 12,010 12,000 12,000 11,500 150,00 18,00 103,00 105,00 1,00 - 4 • 12,020 12,000 11,500 150,00 18,00 103,00 105,00 1,00 - 4 • 12,020 12,000 11,500 150,00 18,00 103,00 105,00 1,00 - 4 • 12,020 12,000 11,500 150,00 18,00 103,00 105,00 2,00 - 4 • 16,000							,			-		•
10,010 10,000 10,000 9,500 100,00 15,00 58,00 60,00 1,00 - 4	-,						,			-	4	•
10,020 10,000 10,000 9,500 100,00 15,00 58,00 60,00 2,00 - 4 12,000 12,000 11,500 150,00 18,00 103,00 105,00 1,50 - 4 12,005 12,000 12,000 11,500 150,00 18,00 103,00 105,00 0,50 - 4 12,010 12,000 12,000 11,500 150,00 18,00 103,00 105,00 1,00 - 4 12,020 12,000 12,000 11,500 150,00 18,00 103,00 105,00 1,00 - 4 12,020 12,000 12,000 15,500 150,00 18,00 103,00 105,00 2,00 - 4 16,000 16,000 15,500 150,00 24,00 100,00 102,00 2,00 - 4	,	-,		,	,		,	,		-		•
12,000 12,000 12,000 11,500 150,00 18,00 103,00 105,00 1,50 - 4	,		,	,	,		,			-		•
12,005 12,000 12,000 11,500 150,00 18,00 103,00 105,00 0,50 - 4		,	,		,		,	,		-		•
12,010 12,000 12,000 11,500 150,00 18,00 103,00 105,00 1,00 - 4	,	,	,		,		,	,		-		•
12,020 12,000 12,000 11,500 150,00 18,00 103,00 105,00 2,00 - 4	12,005	,	,							-		•
16,000 16,000 16,000 15,500 150,00 24,00 100,00 102,00 2,00 - 4		,	,							-	_	•
	,	,	,		,	,	,	,		-		•
16,030 16,000 16,000 15,500 150,00 24,00 100,00 102,00 3,00 - 4 ■		-,	-,		,	,	,	- ,		-		•
	16,030	16,000	16,000	15,500	150,00	24,00	100,00	102,00	3,00	-	4	

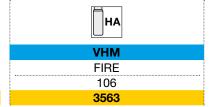
	ie. HFO-Schlup	•	fz (mm/z) bei Nenn-Ø									
ISO Code	Härte	Schnitttiefe*	Schnittbr.**	Schnittgeschw.			12	(111111/2) 1	ei Neilli			
		ap	a _e	Vc	2	3	4	6	8	10	12	16
P	≤ 850 N/mm ²	-	-	-	-	-	-	-	-	-	-	-
Stahl	850 - 1400 N/mm ²	0,2xd	0,5xd	200	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
K Guss	≥ 240 HB 30	0,2xd	0,5xd	200	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
H Gehärteter	≤ 54 HRC	0,1xd	0,5xd	140	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
Stahl	≤ 63 HRC	0,05xd	0,3xd	80	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1

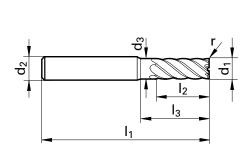
^{*} Für optimale Spanabfuhr und Standweg ist Trockenbearbeitung mit Luftkühlung empfohlen.

^{**} Beim HSC-Kopierfräsen und imachining mit $a_e = 0.1xd$ kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden.

Mehrzahn-Schaftfräser mit Eckenradius GH 100 U

mit Zentrumschnitt





Schneidstoff Oberfläche Rabattgruppe Artikel-Nr.

Code-Nr.	d1 h10	d2 h6	d3	l1	12	13	r	Z	Verfügbarkeit
Code-IVI.	mm	mm	mm	mm	mm	mm	mm		Verlügbarkeit
6,005	6,000	6,000	5,700	57,00	13,00	20,00	0,50	6	•
6,010	6,000	6,000	5,700	57,00	13,00	20,00	1,00	6	•
8,005	8,000	8,000	7,700	63,00	19,00	26,00	0,50	6	•
8,010	8,000	8,000	7,700	63,00	19,00	26,00	1,00	6	•
8,015	8,000	8,000	7,700	63,00	19,00	26,00	1,50	6	•
8,020	8,000	8,000	7,700	63,00	19,00	26,00	2,00	6	•
10,005	10,000	10,000	9,500	72,00	22,00	30,00	0,50	6	•
10,010	10,000	10,000	9,500	72,00	22,00	30,00	1,00	6	•
10,015	10,000	10,000	9,500	72,00	22,00	30,00	1,50	6	•
10,020	10,000	10,000	9,500	72,00	22,00	30,00	2,00	6	•
12,005	12,000	12,000	11,500	83,00	26,00	36,00	0,50	6	•
12,010	12,000	12,000	11,500	83,00	26,00	36,00	1,00	6	•
12,015	12,000	12,000	11,500	83,00	26,00	36,00	1,50	6	
12,020	12,000	12,000	11,500	83,00	26,00	36,00	2,00	6	•
16,005	16,000	16,000	15,500	92,00	32,00	42,00	0,50	6	•
16,010	16,000	16,000	15,500	92,00	32,00	42,00	1,00	6	•
16,015	16,000	16,000	15,500	92,00	32,00	42,00	1,50	6	•
16,020	16,000	16,000	15,500	92,00	32,00	42,00	2,00	6	•
20,005	20,000	20,000	19,500	104,00	38,00	52,00	0,50	8	•
20,010	20,000	20,000	19,500	104,00	38,00	52,00	1,00	8	•
20,015	20,000	20,000	19,500	104,00	38,00	52,00	1,50	8	•
20,020	20,000	20,000	19,500	104,00	38,00	52,00	2,00	8	•

		Schnitttiefe*	Schnittbr.**	Schnittgeschw.			fz	(mm/z) k	ei Nenn	-Ø		
ISO Code	Härte	a _p	a _e	v _c	3	6	8	10	12	16	20	25
Р	≤ 850 N/mm ²	2xd	0,2xd	280	0,014	0,027	0,036	0,05	0,059	0,072	0,086	0,12
Stahl	850 - 1400 N/mm ²	2xd	0,15xd	180	0,012	0,024	0,032	0,04	0,048	0,056	0,072	0,104
M	≤ 750 N/mm²	2xd	0,15xd	150	0,014	0,027	0,036	0,045	0,054	0,063	0,081	0,11
Rostfreier Stahl	≥ 750 N/mm ²	2xd	0,1xd	100	0,014	0,027	0,036	0,045	0,054	0,063	0,081	0,11
K Guss	≥ 240 HB 30	2xd	0,2xd	160	0,016	0,03	0,04	0,055	0,065	0,08	0,095	0,14
N Aluminium	≤ 7% Si	2xd	0,15xd	280	0,018	0,035	0,045	0,05	0,065	0,08	0,12	0,15

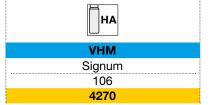
^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" empfohlen.

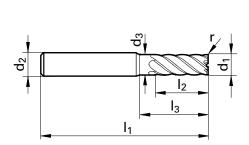
^{**} Beim Trochoidalfräsen und imachining mit $a_e = 0,1-0,2xd$ kann die Schnittgeschwindigkeit v_c und Vorschub um je 50 % erhöht werden.

^{****} Beim Schlichten mit ae 0,01xd ist zum Erreichen optimaler Oberflächen der Vorschub um 25 % zu reduzieren.

Hart-Mehrzahnfräser mit Eckradius GH 100 H

mit Zentrumschnitt





Schneidstoff Oberfläche Rabattgruppe Artikel-Nr.

Coc	de-Nr.	d1 h10	d2 h6	d3	l1	12	13	r	Z	Verfügbarkeit
COC	JE-IVI.	mm	mm	mm	mm	mm	mm	mm		Verlugbarkeit
3,	,003	3,000	6,000	2,800	57,00	8,00	11,40	0,30	6	•
4,	004	4,000	6,000	3,800	57,00	11,00	15,90	0,40	6	•
5,	,005	5,000	6,000	4,800	57,00	13,00	17,90	0,50	6	•
6,	005	6,000	6,000	5,700	57,00	13,00	20,00	0,50	6	•
6,	010	6,000	6,000	5,700	57,00	13,00	20,00	1,00	6	•
8,	005	8,000	8,000	7,700	63,00	19,00	26,00	0,50	6	•
8,	010	8,000	8,000	7,700	63,00	19,00	26,00	1,00	6	•
8,	015	8,000	8,000	7,700	63,00	19,00	26,00	1,50	6	•
10	,005	10,000	10,000	9,500	72,00	22,00	30,00	0,50	6	•
10	,010	10,000	10,000	9,500	72,00	22,00	30,00	1,00	6	•
10	,015	10,000	10,000	9,500	72,00	22,00	30,00	1,50	6	•
12	,005	12,000	12,000	11,500	83,00	26,00	36,00	0,50	6	•
12	,010	12,000	12,000	11,500	83,00	26,00	36,00	1,00	6	•
12	,015	12,000	12,000	11,500	83,00	26,00	36,00	1,50	6	•
16	,010	16,000	16,000	15,500	92,00	32,00	42,00	1,00	6	•
16	,020	16,000	16,000	15,500	92,00	32,00	42,00	2,00	6	•

Committee	te. Ochilenten	una in o-oc	mappen									
ISO Code	Härte	Schnitttiefe*	Schnittbr.**	Schnittgeschw.			fz					
130 Code	пане	a _p	a _e	v _c	3	6	8	10	12	16	20	25 - 0,104 0,14 0,104 0,09
Р	≤ 850 N/mm ²	-	-	-	-	-	-	-	-	-	-	-
Stahl	850 - 1400 N/mm ²	2xd	0,05xd	180	0,012	0,024	0,032	0,04	0,048	0,056	0,072	0,104
K Guss	≥ 240 HB 30	2xd	0,05xd	160	0,016	0,03	0,04	0,055	0,065	0,08	0,095	0,14
H	≤ 54 HRC	1,5xd	0,05xd	120	0,012	0,024	0,032	0,04	0,048	0,056	0,072	0,104
Gehärteter Stahl	≤ 63 HRC	1,5xd	0,02xd	90	0,01	0,015	0,025	0,035	0,042	0,05	0,08	0,09

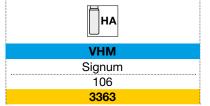
^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" und bei Hartbearbeitung Luftkühlung empfohlen.

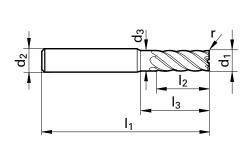
^{**} Beim Trochoidalfräsen und imachining mit ae = 0,02-0,1xd kann die Schnittgeschwindigkeit Vc und Vorschub um je 50 % erhöht werden.

^{***} Beim Schlichten mit ae 0,01xd ist zum Erreichen optimaler Oberflächen der Vorschub um 25 % zu reduzieren.

Hart-Mehrzahnfräser mit Eckradius GH 100 H

mit Zentrumschnitt





Code-Nr.	d1 h10	d2 h6	d3	I1	12	13	r	Z
Code-IVI.	mm	mm	mm	mm	mm	mm	mm	
6,000	6,000	6,000	5,700	75,00	13,00	38,00	0,50	6
8,000	8,000	8,000	7,700	100,00	19,00	63,00	0,50	6
10,000	10,000	10,000	9,500	100,00	22,00	58,00	0,50	6
12,000	12,000	12,000	11,500	150,00	26,00	103,00	1,00	6
16,000	16,000	16,000	15,500	150,00	32,00	100,00	1,00	6

Ve	rfügbar	keit	
	•		
	•		

Ochinicwen	te. Schlichten	und HF 0-30	iliuppeli									
ISO Code	Härte	Schnitttiefe*	Schnittbr.**	Schnittgeschw.			fz	(mm/z) k	oei Nenn	-Ø		
130 Code	пане	a _p	a _e	v _c	3	6	8	10	12	16	20	25 - 0,104 0,14 0,104 0,09
Р	≤ 850 N/mm ²	-	-	-	-	-	-	-	-	-	-	-
Stahl	850 - 1400 N/mm ²	2xd	0,05xd	180	0,012	0,024	0,032	0,04	0,048	0,056	0,072	0,104
K Guss	≥ 240 HB 30	2xd	0,05xd	160	0,016	0,03	0,04	0,055	0,065	0,08	0,095	0,14
H Gehärteter	≤ 54 HRC	1,5xd	0,05xd	120	0,012	0,024	0,032	0,04	0,048	0,056	0,072	0,104
Stahl	≤ 63 HRC	1,5xd	0,02xd	90	0,01	0,015	0,025	0,035	0,042	0,05	0,08	0,09

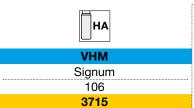
^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" und bei Hartbearbeitung Luftkühlung empfohlen.

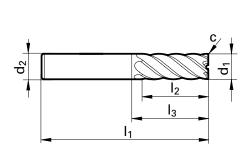
^{**} Beim Trochoidalfräsen und imachining mit ae = 0,02-0,1xd kann die Schnittgeschwindigkeit Vc und Vorschub um je 50 % erhöht werden.

^{***} Beim Schlichten mit ae 0,01xd ist zum Erreichen optimaler Oberflächen der Vorschub um 25~% zu reduzieren.

Hart-Mehrzahnfräser GH 100 H

mit Zentrumschnitt




63 HRC

Schneidstoff
Oberfläche
Rabattgruppe
Artikel-Nr.

Code-Nr.	d1 h10	d2 h6	l1	12	13	С	Z
Code-ivr.	mm	mm	mm	mm	mm	mm x 45°	
3,000	3,000	6,000	57,00	8,00	11,40	0,05	6
4,000	4,000	6,000	57,00	11,00	15,90	0,05	6
5,000	5,000	6,000	57,00	13,00	17,90	0,05	6
6,000	6,000	6,000	57,00	13,00	21,00	0,05	6
8,000	8,000	8,000	63,00	19,00	27,00	0,10	6
10,000	10,000	10,000	72,00	22,00	32,00	0,10	6
12,000	12,000	12,000	83,00	26,00	38,00	0,10	6
14,000	14,000	14,000	83,00	26,00	38,00	0,15	6
14,001	14,000	16,000	92,00	32,00	43,00	0,15	6
16,000	16,000	16,000	92,00	32,00	44,00	0,15	6
18,000	18,000	18,000	92,00	32,00	44,00	0,15	8
18,001	18,000	20,000	104,00	38,00	53,00	0,15	8
20,000	20,000	20,000	104,00	38,00	54,00	0,15	8

Verfügbarkeit

OCHILICANCIA	e. Schlichten	und HFO-3	ciliuppeli									
ISO Code	Härte	Schnitttiefe*	Schnittbr.**	Schnittgeschw.			fz	(mm/z) k	oei Nenn	-Ø		
130 Code	пане	a _p	a _e	v _c	3	6	8	10	12	16	20	25 - 0,104 0,14 0,104 0,09
P	≤ 850 N/mm ²	-	-	-	-	-	-	-	-	-	-	-
Stahl	850 - 1400 N/mm ²	2xd	0,05xd	180	0,012	0,024	0,032	0,04	0,048	0,056	0,072	0,104
K Guss	≥ 240 HB 30	2xd	0,05xd	160	0,016	0,03	0,04	0,055	0,065	0,08	0,095	0,14
H Gehärteter	≤ 54 HRC	1,5xd	0,05xd	120	0,012	0,024	0,032	0,04	0,048	0,056	0,072	0,104
Stahl	≤ 63 HRC	1,5xd	0,02xd	90	0,01	0,015	0,025	0,035	0,042	0,05	0,08	0,09

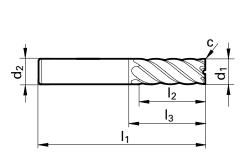
^{*} Für optimale Spanabfuhr und Standweg ist Peripheriekühlung "Gührojet" und bei Hartbearbeitung Luftkühlung empfohlen.

^{**} Beim Trochoidalfräsen und imachining mit $a_e = 0.02-0.1xd$ kann die Schnittgeschwindigkeit v_c und Vorschub um je 50 % erhöht werden.

^{***} Beim Schlichten mit ae 0,01xD ist zum Erreichen optimaler Oberflächen der Vorschub um 25 % zu reduzieren.

Hart-Mehrzahnfräser GH 100 H

mit Zentrumschnitt



VHM
Signum
106
3716

Schneidstoff Oberfläche Rabattgruppe Artikel-Nr.

Code-Nr.	d1 h10	d2 h6	l1	12	13	С	Z
Code-ivi.	mm	mm	mm	mm	mm	mm x 45°	
6,000	6,000	6,000	75,00	30,00	39,00	0,05	6
8,000	8,000	8,000	100,00	40,00	64,00	0,10	6
10,000	10,000	10,000	100,00	40,00	60,00	0,10	6
12,000	12,000	12,000	150,00	45,00	105,00	0,10	6
16,000	16,000	16,000	150,00	65,00	102,00	0,15	6
20,000	20,000	20,000	150,00	65,00	100,00	0,15	8

_	
	Verfügbarkeit
	•
	, and the second

00	ic. Commonicin	ana m o o	от пррот									
ISO Code	Härte	Schnitttiefe*	Schnittbr.**	Schnittgeschw.			fz	(mm/z) k	oei Nenn	-Ø		
130 Code	пане	a _p	a _e	v _c	3	6	8	10	12	16	20	25
P	≤ 850 N/mm ²	-	-	-	-	-	-	-	-	-	-	-
Stahl	850 - 1400 N/mm ²	2xd	0,05xd	180	0,012	0,024	0,032	0,04	0,048	0,056	0,072	0,104
K Guss	≥ 240 HB 30	2xd	0,05xd	160	0,016	0,03	0,04	0,055	0,065	0,08	0,095	0,14
H Gehärteter	≤ 54 HRC	1,5xd	0,05xd	120	0,012	0,024	0,032	0,04	0,048	0,056	0,072	0,104
Stahl	≤ 63 HRC	1,5xd	0,02xd	90	0,01	0,015	0,025	0,035	0,042	0,05	0,08	0,09

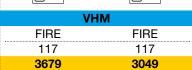
^{*} Für optimale Spanabfuhr und Standweg ist Peripheriekühlung "Gührojet" und bei Hartbearbeitung Luftkühlung empfohlen.

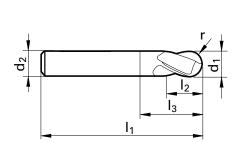
^{**} Beim Trochoidalfräsen und imachining mit $a_e = 0.02-0.1xd$ kann die Schnittgeschwindigkeit v_c und Vorschub um je 50 % erhöht werden.

^{***} Beim Schlichten mit ae 0,01xD ist zum Erreichen optimaler Oberflächen der Vorschub um 25 % zu reduzieren.

Langlochfräser mit Vollradius (2-Schneider)

mit Zentrumschnitt





Code-Nr.	d1 h10	d2 h6	l1	12	13	r	Z
Code-Ivi.	mm	mm	mm	mm	mm	mm	
0,500	0,500	3,000	38,00	1,00	2,10	0,25	2
0,800	0,800	3,000	38,00	1,00	2,10	0,40	2
1,000	1,000	3,000	38,00	2,00	3,90	0,50	2
1,500	1,500	3,000	38,00	3,00	6,40	0,75	2
2,000	2,000	6,000	57,00	6,00	9,40	1,00	2
3,000	3,000	6,000	57,00	7,00	11,90	1,50	2
4,000	4,000	6,000	57,00	8,00	13,40	2,00	2
5,000	5,000	6,000	57,00	10,00	16,90	2,50	2
6,000	6,000	6,000	57,00	10,00	21,00	3,00	2
8,000	8,000	8,000	63,00	16,00	27,00	4,00	2
10,000	10,000	10,000	72,00	19,00	32,00	5,00	2
12,000	12,000	12,000	83,00	22,00	38,00	6,00	2
14,000	14,000	14,000	83,00	22,00	38,00	7,00	2
14,001	14,000	16,000	92,00	26,00	43,00	7,00	2
16,000	16,000	16,000	92,00	26,00	44,00	8,00	2
18,000	18,000	18,000	92,00	26,00	44,00	9,00	2
18,001	18,000	20,000	104,00	32,00	53,00	9,00	2
20,000	20,000	20,000	104,00	32,00	54,00	10,00	2

Verfü	gbarkeit
•	
	•
•	
•	•
•	•
•	•

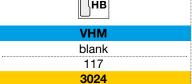
Schilltwen	te: Schruppen	una -Ropiem	asen									
ISO Code	Härte	Schnitttiefe Schnittbreite** Schnittgeschw.			fz (mm/z) bei Nenn-Ø							
130 Code	naite	ap	a _e	Vc	2	3	4	6	8	10	12	16
Р	≤ 850 N/mm ²	0,5xd	0,4xd	175	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Stahl	850 - 1400 N/mm ²	0,5xd	0,3xd	140	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
M Rostfreier	≤ 750 N/mm ²	1xd	0,1xd	126	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Stahl	≥ 750 N/mm ²	1xd	0,1xd	56	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
N Aluminium	≤ 7% Si	1xd	0,3xd	196	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
S Ti-Sonderl.	≤ 1300 N/mm ²	1xd	0,1xd	56	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
H Gehärt Stahl	bis 54 HRC	0,05xd	0,05xd	70	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1

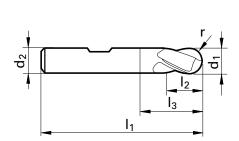
^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" und bei Hartbearbeitung Luftkühlung empfohlen.

^{**} Beim HSC-Schlichten mit a_e = 0,02xd kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden.

Langlochfräser mit Vollradius (2-Schneider)

mit Zentrumschnitt





Code-Nr.	d1 h10	d2 h6	l1	12	13	r	Z
Code-ivi.	mm	mm	mm	mm	mm	mm	
3,000	3,000	6,000	57,00	7,00	11,90	1,50	2
4,000	4,000	6,000	57,00	8,00	13,40	2,00	2
5,000	5,000	6,000	57,00	10,00	16,90	2,50	2
6,000	6,000	6,000	57,00	10,00	21,00	3,00	2
8,000	8,000	8,000	63,00	16,00	27,00	4,00	2
10,000	10,000	10,000	72,00	19,00	32,00	5,00	2
12,000	12,000	12,000	83,00	22,00	38,00	6,00	2
14,000	14,000	14,000	83,00	22,00	38,00	7,00	2
16,000	16,000	16,000	92,00	26,00	44,00	8,00	2
18,000	18,000	18,000	92,00	26,00	44,00	9,00	2
20,000	20,000	20,000	104,00	32,00	54,00	10,00	2

Verfügbarkeit	
•	
•	

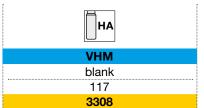
ISO Code	Härte	Schnitttiefe Schnittbreite** Schnittgeschw.			fz (mm/z) bei Nenn-Ø								
150 Code	пагіе	a _p	a _e	Vc	2	3	4	6	8	10	12	16	
Р	≤ 850 N/mm ²	0,5xd	0,4xd	175	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15	
Stahl	850 - 1400 N/mm ²	0,5xd	0,3xd	140	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15	
M Rostfreier	≤ 750 N/mm ²	1xd	0,1xd	126	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15	
Stahl	≥ 750 N/mm ²	1xd	0,1xd	56	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1	
N Aluminium	≤ 7% Si	1xd	0,3xd	196	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15	
S Ti-Sonderl.	≤ 1300 N/mm ²	1xd	0,1xd	56	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1	
H Gehärt. Stahl	bis 54 HRC	0,05xd	0,05xd	70	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1	

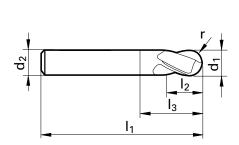
^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" und bei Hartbearbeitung Luftkühlung empfohlen.

^{**} Beim HSC-Schlichten mit $a_e=0,02xd$ kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden. Alle Angaben beziehen sich auf beschichtete Werkzeuge. Bei blanken Werkzeugen bitte v_c -40 % und f_z -25%!

Langlochfräser mit Vollradius (2-Schneider)

mit Zentrumschnitt




32 HRC

Code-Nr.	d1 h10	d2 h6	l1	12	13	r	Z
Code-Ivi.	mm	mm	mm	mm	mm	mm	
0,500	0,500	3,000	38,00	1,00	2,10	0,25	2
0,800	0,800	3,000	38,00	1,00	2,10	0,40	2
1,000	1,000	3,000	38,00	2,00	3,90	0,50	2
1,500	1,500	3,000	38,00	3,00	6,40	0,75	2
2,000	2,000	6,000	57,00	6,00	9,40	1,00	2
3,000	3,000	6,000	57,00	7,00	11,90	1,50	2
4,000	4,000	6,000	57,00	8,00	13,40	2,00	2
5,000	5,000	6,000	57,00	10,00	16,90	2,50	2
6,000	6,000	6,000	57,00	10,00	21,00	3,00	2
8,000	8,000	8,000	63,00	16,00	27,00	4,00	2
10,000	10,000	10,000	72,00	19,00	32,00	5,00	2
12,000	12,000	12,000	83,00	22,00	38,00	6,00	2
14,000	14,000	14,000	83,00	22,00	38,00	7,00	2
14,001	14,000	16,000	92,00	26,00	43,00	7,00	2
16,000	16,000	16,000	92,00	26,00	44,00	8,00	2
18,000	18,000	18,000	92,00	26,00	44,00	9,00	2
18,001	18,000	20,000	104,00	32,00	53,00	9,00	2
20,000	20,000	20,000	104,00	32,00	54,00	10,00	2

Verfügbarkeit	
•	
•	
•	
•	
•	

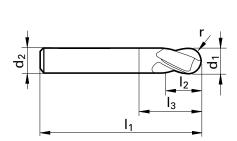
ISO Code	Härte	Schnitttiefe Schnittbreite** Schnittgeschw.			fz (mm/z) bei Nenn-Ø								
150 Code	пагіе	ap	a _e	Vc	2	3	4	6	8	10	12	16	
Р	≤ 850 N/mm ²	0,5xd	0,4xd	175	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15	
Stahl	850 - 1400 N/mm ²	0,5xd	0,3xd	140	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15	
M Rostfreier	≤ 750 N/mm ²	1xd	0,1xd	126	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15	
Stahl	≥ 750 N/mm ²	1xd	0,1xd	56	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1	
N Aluminium	≤ 7% Si	1xd	0,3xd	196	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15	
S Ti-Sonderl.	≤ 1300 N/mm ²	1xd	0,1xd	56	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1	
H Gehärt. Stahl	bis 54 HRC	0,05xd	0,05xd	70	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1	

^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" und bei Hartbearbeitung Luftkühlung empfohlen.

^{**} Beim HSC-Schlichten mit $a_e=0,02xd$ kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden. Alle Angaben beziehen sich auf beschichtete Werkzeuge. Bei blanken Werkzeugen bitte v_c -40 % und f_z -25%!

Langlochfräser mit Vollradius XL (2-Schneider)

mit Zentrumschnitt



32 HRC

Schneidstoff Oberfläche Rabattgruppe Artikel-Nr.

VH	М
blank	FIRE
117	117
3014	3030

d2 h6	l1	12	13	r	Z
mm	mm	mm	mm	mm	
3,000	75,00	20,00	47,00	1,50	2
4,000	75,00	25,00	47,00	2,00	2
5,000	75,00	30,00	47,00	2,50	2
6,000	75,00	30,00	39,00	3,00	2
8,000	100,00	40,00	64,00	4,00	2
10,000	100,00	40,00	60,00	5,00	2
12,000	150,00	45,00	105,00	6,00	2
	mm 3,000 4,000 5,000 6,000 8,000 10,000	mm mm 3,000 75,00 4,000 75,00 5,000 75,00 6,000 75,00 8,000 100,00 10,000 100,00	mm mm mm 3,000 75,00 20,00 4,000 75,00 25,00 5,000 75,00 30,00 6,000 75,00 30,00 8,000 100,00 40,00 10,000 100,00 40,00	mm mm mm mm 3,000 75,00 20,00 47,00 4,000 75,00 25,00 47,00 5,000 75,00 30,00 47,00 6,000 75,00 30,00 39,00 8,000 100,00 40,00 64,00 10,000 100,00 40,00 60,00	mm mm mm mm mm 3,000 75,00 20,00 47,00 1,50 4,000 75,00 25,00 47,00 2,00 5,000 75,00 30,00 47,00 2,50 6,000 75,00 30,00 39,00 3,00 8,000 100,00 40,00 64,00 4,00 10,000 100,00 40,00 60,00 5,00

Verfü	gbarkeit	
•	•	
•	•	

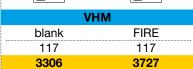
ISO Code	Härte	Schnitttiefe	Schnittbreite**	Schnittgeschw.			fz (mm/z) k	oei Nenn	-Ø		
130 Code Harte		a _p	a _e	Vc	2	3	4	6	8	10	12	16
Р	≤ 850 N/mm ²	0,5xd	0,4xd	175	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Stahl	850 - 1400 N/mm ²	0,5xd	0,3xd	140	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
M Rostfreier	≤ 750 N/mm ²	1xd	0,1xd	126	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Stahl	≥ 750 N/mm ²	1xd	0,1xd	56	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
N Aluminium	≤ 7% Si	1xd	0,3xd	196	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
S Ti-Sonderl.	≤ 1300 N/mm ²	1xd	0,1xd	56	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
H Gehärt. Stahl	bis 54 HRC	0,05xd	0,05xd	70	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1

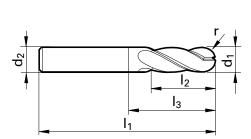
^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" und bei Hartbearbeitung Luftkühlung empfohlen.

^{**} Beim HSC-Schlichten mit $a_e=0,02xd$ kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden. Alle Angaben beziehen sich auf beschichtete Werkzeuge. Bei blanken Werkzeugen bitte v_c -40 % und f_z -25%!

Schaftfräser mit Vollradius (4-Schneider)

mit Zentrumschnitt





Schneidstoff Oberfläche Rabattgruppe Artikel-Nr.

Code-Nr.	d1 h10	d2 h6	l1	12	13	r	Z
Code-ivi.	mm	mm	mm	mm	mm	mm	
4,000	4,000	4,000	50,00	11,00	22,00	2,00	4
5,000	5,000	5,000	50,00	13,00	22,00	2,50	4
6,000	6,000	6,000	57,00	13,00	21,00	3,00	4
8,000	8,000	8,000	63,00	19,00	27,00	4,00	4
10,000	10,000	10,000	72,00	22,00	32,00	5,00	4
12,000	12,000	12,000	83,00	26,00	38,00	6,00	4
14,000	14,000	14,000	83,00	26,00	38,00	7,00	4
14,001	14,000	16,000	92,00	32,00	36,00	7,00	4
16,000	16,000	16,000	92,00	32,00	44,00	8,00	4
18,000	18,000	18,000	92,00	32,00	44,00	9,00	4
18,001	18,000	20,000	104,00	38,00	54,00	9,00	4
20,000	20,000	20,000	104,00	38,00	54,00	10,00	4
						,	

Verf	ügbarkeit
	•
•	•
	•
·	_

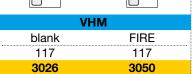
ISO Code	Härte	Schnitttiefe	Schnittbreite**	Schnittgeschw.			fz (mm/z) k	oei Nenn	ı-Ø		
150 Code	пагіе	ap	a _e	Vc	2	3	4	6	8	10	12	16
Р	≤ 850 N/mm ²	0,5xd	0,4xd	175	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Stahl	850 - 1400 N/mm ²	0,5xd	0,3xd	140	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
M Rostfreier	≤ 750 N/mm ²	1xd	0,1xd	126	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Stahl	≥ 750 N/mm ²	1xd	0,1xd	56	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
N Aluminium	≤ 7% Si	1xd	0,3xd	196	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
S Ti-Sonderl.	≤ 1300 N/mm ²	1xd	0,1xd	56	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
H Gehärt. Stahl	bis 54 HRC	0,05xd	0,05xd	70	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1

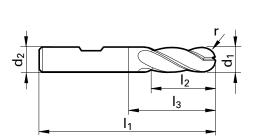
^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" und bei Hartbearbeitung Luftkühlung empfohlen.

^{**} Beim HSC-Schlichten mit $a_e=0,02xd$ kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden. Alle Angaben beziehen sich auf beschichtete Werkzeuge. Bei blanken Werkzeugen bitte v_c -40 % und f_z -25%!

Schaftfräser mit Vollradius (4-Schneider)

mit Zentrumschnitt





Schneidstoff Oberfläche Rabattgruppe Artikel-Nr.

Code-Nr.	d1 h10	d2 h6	l1	12	13	r	Z
Code-IVI.	mm	mm	mm	mm	mm	mm	
3,000	3,000	6,000	57,00	8,00	12,90	1,50	4
4,000	4,000	6,000	57,00	11,00	16,90	2,00	4
5,000	5,000	6,000	57,00	13,00	19,90	2,50	4
6,000	6,000	6,000	57,00	13,00	21,00	3,00	4
8,000	8,000	8,000	63,00	19,00	27,00	4,00	4
10,000	10,000	10,000	72,00	22,00	32,00	5,00	4
12,000	12,000	12,000	83,00	26,00	38,00	6,00	4
14,000	14,000	14,000	83,00	26,00	38,00	7,00	4
16,000	16,000	16,000	92,00	32,00	44,00	8,00	4
18,000	18,000	18,000	92,00	32,00	44,00	9,00	4
20,000	20,000	20,000	104,00	38,00	54,00	10,00	4

Verfügk	parkeit
•	•
	•

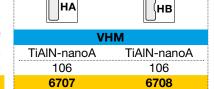
ISO Code	112.4.	Schnitttiefe	Schnittbreite**	Schnittgeschw.			fz (mm/z) l	ei Nenn	-Ø		
ISO Code Härte		ap	a _e	Vc	2	3	4	6	8	10	12	16
Р	≤ 850 N/mm ²	0,5xd	0,4xd	175	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Stahl	850 - 1400 N/mm ²	0,5xd	0,3xd	140	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
M Rostfreier	≤ 750 N/mm ²	1xd	0,1xd	126	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Stahl	≥ 750 N/mm ²	1xd	0,1xd	56	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
N Aluminium	≤ 7% Si	1xd	0,3xd	196	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
S Ti-Sonderl.	≤ 1300 N/mm ²	1xd	0,1xd	56	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
H Gehärt. Stahl	bis 54 HRC	0,05xd	0,05xd	70	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1

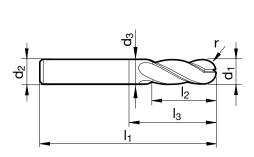
^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" und bei Hartbearbeitung Luftkühlung empfohlen.

^{**} Beim HSC-Schlichten mit $a_e=0,02xd$ kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden. Alle Angaben beziehen sich auf beschichtete Werkzeuge. Bei blanken Werkzeugen bitte v_c -40 % und f_z -25%!

Ratiofräser RF 100 VA

mit Zentrumschnitt




48

Code-Nr.	d1 h10	d2 h6	d3	I1	12	13	r	Z
Code-Mr.	mm	mm	mm	mm	mm	mm	mm	
4,000	4,000	6,000	3,800	57,00	11,00	18,00	2,00	4
5,000	5,000	6,000	4,800	57,00	13,00	18,00	2,50	4
6,000	6,000	6,000	5,700	57,00	13,00	20,00	3,00	4
8,000	8,000	8,000	7,700	63,00	19,00	26,00	4,00	4
10,000	10,000	10,000	9,500	72,00	22,00	30,00	5,00	4
12,000	12,000	12,000	11,500	83,00	26,00	36,00	6,00	4
16,000	16,000	16,000	15,500	92,00	32,00	42,00	8,00	4
20,000	20,000	20,000	19,500	104,00	38,00	52,00	10,00	4
25,000	25,000	25,000	24,000	121,00	45,00	63,00	12,50	4

Verfügb	arkeit	
•	•	
•	•	

Schnittwerte: HPC-Schruppen*

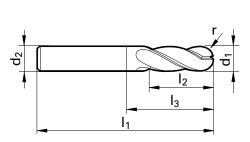
Ochmittweit	e. Tir O-Schluppe	, ,,										
ISO Code	Härte	Schnitttiefe	Schnittbreite**	Schnittgeschw.			fz (mm/z) k	oei Nenn	-Ø		
130 Code	naite	a _p	a _e	v _c	3	6	8	10	12	16	20	25
P Stahl	≤ 850 N/mm ²	1xd	0,3xd	200	0,02	0,04	0,055	0,07	0,085	0,1	0,12	0,17
M Rostfreier	≤ 750 N/mm ²	1xd	0,3xd	140	0,018	0,035	0,045	0,06	0,07	0,09	0,1	0,15
Stahl	≥ 750 N/mm ²	1xd	0,3xd	120	0,016	0,03	0,04	0,055	0,065	0,08	0,095	0,014
N Aluminium	≤ 7% Si	1xd	0,3xd	600	0,018	0,035	0,045	0,06	0,07	0,09	0,1	0,15
S Ti-Sonderl.	≤ 1300 N/mm ²	1xd	0,2xd	130	0,02	0,03	0,04	0,06	0,07	0,08	0,09	0,12

^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" empfohlen.

^{**} Beim Kopierfräsen und imachining mit $a_e = 0,1-0,2xd$ kann die Schnittgeschwindigkeit v_c und Vorschub um je 50 % erhöht werden.

Schaftfräser mit Vollradius XL (4-Schneider)

mit Zentrumschnitt



Schneidstoff Oberfläche Rabattgruppe Artikel-Nr.

Code-Nr.	d1 h10	d2 h6	I1	12	13	r	Z
Code-Ivr.	mm	mm	mm	mm	mm	mm	
3,000	3,000	3,000	75,00	20,00	47,00	1,50	4
4,000	4,000	4,000	75,00	25,00	47,00	2,00	4
5,000	5,000	5,000	75,00	30,00	47,00	2,50	4
6,000	6,000	6,000	75,00	30,00	39,00	3,00	4
8,000	8,000	8,000	100,00	40,00	64,00	4,00	4
10,000	10,000	10,000	100,00	40,00	60,00	5,00	4
12,000	12,000	12,000	150,00	45,00	105,00	6,00	4

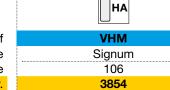
Verfü	gbarkei	t	
•		•	
		•	
•		•	

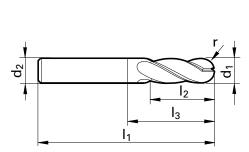
ISO Code	Härte	Schnitttiefe	Schnittbreite**	Schnittgeschw.			fz (mm/z) k	oei Nenn	-Ø		
150 Code	пагіе	a _p	a _e	Vc	2	3	4	6	8	10	12	16
Р	≤ 850 N/mm ²	0,5xd	0,4xd	175	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Stahl	850 - 1400 N/mm ²	0,5xd	0,3xd	140	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
M Rostfreier	≤ 750 N/mm ²	1xd	0,1xd	126	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Stahl	≥ 750 N/mm ²	1xd	0,1xd	56	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
N Aluminium	≤ 7% Si	1xd	0,3xd	196	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
S Ti-Sonderl.	≤ 1300 N/mm ²	1xd	0,1xd	56	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
H Gehärt. Stahl	bis 54 HRC	0,05xd	0,05xd	70	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1

^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" und bei Hartbearbeitung Luftkühlung empfohlen.

^{**} Beim HSC-Schlichten mit $a_e=0,02xd$ kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden. Alle Angaben beziehen sich auf beschichtete Werkzeuge. Bei blanken Werkzeugen bitte v_c -40 % und f_z -25%!

mit Zentrumschnitt





Code-Nr.	d1 h8	d2 h6	I1	12	13	r	Z
Code-IVI.	mm	mm	mm	mm	mm	mm	
6,000	6,000	6,000	57,00	12,00	21,00	3,00	2
8,000	8,000	8,000	63,00	16,00	27,00	4,00	2
10,000	10,000	10,000	72,00	20,00	32,00	5,00	2
12,000	12,000	12,000	83,00	24,00	38,00	6,00	2

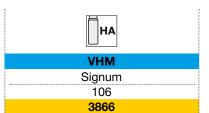
V	erfügb	arkeit	
	•		
	•		

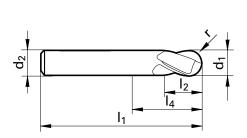
ISO Code	Härte	Schnitttiefe	Schnittbreite**	Schnittgeschw.			fz (mm/z) k	oei Nenn	-Ø		
150 Code	пагіе	ap	a _e	Vc	2	3	4	6	8	10	12	16
Р	≤ 850 N/mm ²	0,1xd	0,1xd	200	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Stahl	850 - 1400 N/mm ²	0,1xd	0,1xd	180	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
M	≤ 750 N/mm ²	0,1xd	0,1xd	140	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Rostfreier Stahl	≥ 750 N/mm ²	0,05xd	0,1xd	100	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
N Aluminium	≤ 7% Si	0,15xd	0,1xd	280	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
S Ti-Sonderl.	≤ 1300 N/mm ²	0,05xd	0,1xd	90	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
H Gehärt. Stahl	bis 54 HRC	0,05xd	0,05xd	140	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1

^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" und bei Hartbearbeitung Luftkühlung empfohlen.

^{**} Beim HSC-Schlichten mit $a_e = 0.02xd$ kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden.

mit Zentrumschnitt




54 HRC

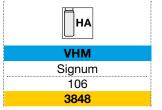
Code-Nr.	d1 h8	d2 h6	I1	12	13	r	Z
Code-Mr.	mm	mm	mm	mm	mm	mm	
4,000	4,000	4,000	80,00	8,00	52,00	2,00	2
6,000	6,000	6,000	100,00	12,00	64,00	3,00	2
8,000	8,000	8,000	100,00	16,00	64,00	4,00	2
10,000	10,000	10,000	100,00	20,00	60,00	5,00	2
12,000	12,000	12,000	120,00	24,00	75,00	6,00	2

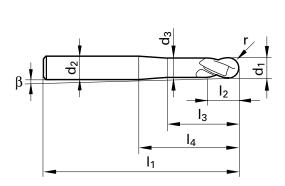
Verfü	igbarkei	t
	•	

ISO Code	Härte	Schnitttiefe	Schnittbreite**	Schnittgeschw.			fz (mm/z) k	oei Nenn	ı-Ø		
150 Code	пагіе	ap	a _e	Vc	2	3	4	6	8	10	12	16
Р	≤ 850 N/mm ²	0,1xd	0,1xd	200	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Stahl	850 - 1400 N/mm ²	0,1xd	0,1xd	180	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
M Rostfreier	≤ 750 N/mm ²	0,1xd	0,1xd	140	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Stahl	≥ 750 N/mm ²	0,05xd	0,1xd	100	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
N Aluminium	≤ 7% Si	0,15xd	0,1xd	280	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
S Ti-Sonderl.	≤ 1300 N/mm ²	0,05xd	0,1xd	90	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
H Gehärt. Stahl	bis 54 HRC	0,05xd	0,05xd	140	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1

^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" und bei Hartbearbeitung Luftkühlung empfohlen. ** Beim HSC-Schlichten mit $a_e = 0,02xd$ kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden.

mit Zentrumschnitt





Schneidstoff Oberfläche Rabattgruppe Artikel-Nr.

Code-Nr.	d1 h8	d2 h6	d3	l1	12	13	14	r	β	Z
Code-Mr.	mm	mm	mm	mm	mm	mm	mm	mm	0	
2,000	2,000	6,000	1,800	57,00	3,00	6,20	20,00	1,00	6,10	2
3,000	3,000	6,000	2,800	57,00	3,50	8,40	20,00	1,50	4,70	2
4,000	4,000	6,000	3,800	57,00	4,00	9,40	20,00	2,00	3,20	2
6,000	6,000	6,000	5,600	57,00	6,00	19,00	20,00	3,00	-	2
8,000	8,000	8,000	7,600	63,00	7,00	25,00	26,00	4,00	-	2
10,000	10,000	10,000	9,600	72,00	8,00	28,00	30,00	5,00	-	2
12,000	12,000	12,000	11,500	83,00	10,00	33,00	35,00	6,00	-	2

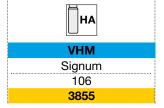
Verfügbarkeit	
•	
•	
•	

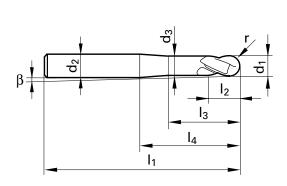
ISO Code	Härte	Schnitttiefe	Schnittbreite**	Schnittgeschw.			fz (mm/z) k	oei Nenn	-Ø		
150 Code	пагіе	a _p	a _e	Vc	2	3	4	6	8	10	12	16
P	≤ 850 N/mm ²	0,1xd	0,1xd	200	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Stahl	850 - 1400 N/mm ²	0,1xd	0,1xd	180	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
M	≤ 750 N/mm ²	0,1xd	0,1xd	140	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Rostfreier Stahl	≥ 750 N/mm ²	0,05xd	0,1xd	100	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
N Aluminium	≤ 7% Si	0,15xd	0,1xd	280	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
S Ti-Sonderl.	≤ 1300 N/mm ²	0,05xd	0,1xd	90	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
H Gehärt. Stahl	bis 54 HRC	0,05xd	0,05xd	140	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1

^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" und bei Hartbearbeitung Luftkühlung empfohlen.

^{**} Beim HSC-Schlichten mit $a_e = 0.02xd$ kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden.

mit Zentrumschnitt





Schneidstoff Oberfläche Rabattgruppe Artikel-Nr.

Code-Nr.	d1 h8	d2 h6	d3	l1	12	I3	14	r	β	Z
Code-IVI.	mm	mm	mm	mm	mm	mm	mm	mm	٥	
6,000	6,000	6,000	5,600	80,00	6,00	39,00	40,00	3,00	-	2
8,000	8,000	8,000	7,600	100,00	7,00	59,00	60,00	4,00	-	2
10,000	10,000	10,000	9,600	120,00	8,00	73,00	75,00	5,00	-	2
12,000	12,000	12,000	11,500	120,00	10,00	68,00	70,00	6,00	-	2

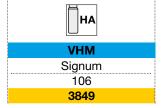
Verfügbarkeit	
•	

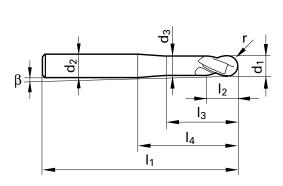
ISO Codo	S Ti-Sonderl. ≤ 1300 N/mm ²	Schnitttiefe	Schnittbreite**	Schnittgeschw.	fz (mm/z) bei Nenn-Ø								
130 Code	пане	a _p	a _e	Vc	2	3	4	6	8	10	12	16	
Р	≤ 850 N/mm ²	0,1xd	0,1xd	200	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15	
Stahl		0,1xd	0,1xd	180	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15	
	≤ 750 N/mm ²	0,1xd	0,1xd	140	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15	
	≥ 750 N/mm ²	0,05xd	0,1xd	100	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1	
N Aluminium	≤ 7% Si	0,15xd	0,1xd	280	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15	
S Ti-Sonderl.	≤ 1300 N/mm ²	0,05xd	0,1xd	90	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1	
H Gehärt. Stahl	bis 54 HRC	0,05xd	0,05xd	140	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1	

^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" und bei Hartbearbeitung Luftkühlung empfohlen.

^{**} Beim HSC-Schlichten mit a_e = 0,02xd kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden.

mit Zentrumschnitt





Schneidstoff Oberfläche Rabattgruppe Artikel-Nr.

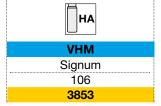
Code-Nr.	d1 h8	d2 h6	d3	I1	12	13	14	r	β	Z
Code-Mr.	mm	mm	mm	mm	mm	mm	mm	mm	٥	
2,000	2,000	6,000	1,800	80,00	3,00	8,00	40,00	1,00	3,00	2
3,000	3,000	6,000	2,800	80,00	3,50	12,00	40,00	1,50	2,30	2
4,000	4,000	6,000	3,800	80,00	4,00	20,00	40,00	2,00	1,60	2
5,000	5,000	6,000	4,700	80,00	5,00	25,00	40,00	2,50	0,80	2
6,000	6,000	8,000	5,600	100,00	6,00	25,00	60,00	3,00	1,10	2
8,000	8,000	10,000	7,600	120,00	7,00	30,00	75,00	4,00	0,90	2
10,000	10,000	12,000	9,600	120,00	8,00	30,00	70,00	5,00	0,90	2
12,000	12,000	16,000	11,500	150,00	10,00	35,00	100,00	6,00	1,30	2

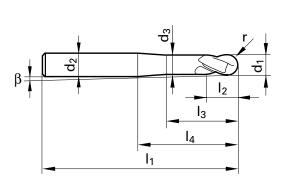
ISO Code	Härte	Schnitttiefe	Schnittbreite**	Schnittgeschw.			fz (mm/z) k	oei Nenn	-Ø		
150 Code	пагіе	a _p	a _e	Vc	2	3	4	6	8	10	12	16
P	≤ 850 N/mm ²	0,1xd	0,1xd	200	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Stahl	850 - 1400 N/mm ²	0,1xd	0,1xd	180	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
M	≤ 750 N/mm ²	0,1xd	0,1xd	140	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Rostfreier Stahl	≥ 750 N/mm ²	0,05xd	0,1xd	100	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
N Aluminium	≤ 7% Si	0,15xd	0,1xd	280	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
S Ti-Sonderl.	≤ 1300 N/mm ²	0,05xd	0,1xd	90	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
H Gehärt. Stahl	bis 54 HRC	0,05xd	0,05xd	140	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1

^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" und bei Hartbearbeitung Luftkühlung empfohlen.

^{**} Beim HSC-Schlichten mit $a_e = 0.02xd$ kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden.

mit Zentrumschnitt





	14.1.0	10.1.0	10	1.4	10	10	14			_
Code-Nr.	d1 h8	d2 h6	d3	I1	l2	13	14	r	β	Z
Code III.	mm	mm	mm	mm	mm	mm	mm	mm	0	
2,000	2,000	6,000	1,800	80,00	3,00	8,00	40,00	1,00	3,00	2
3,000	3,000	6,000	2,800	80,00	3,50	12,00	40,00	1,50	2,30	2
4,000	4,000	6,000	3,800	100,00	4,00	20,00	60,00	2,00	1,00	2
6,000	6,000	8,000	5,600	120,00	6,00	25,00	80,00	3,00	0,80	2
8,000	8,000	10,000	7,600	150,00	7,00	20,00	105,00	4,00	0,60	2
6,000	6,000	8,000	5,600	120,00	6,00	25,00	80,00	3,00	0,80	2

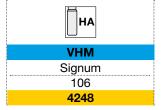
Verfügbarkeit
•
•

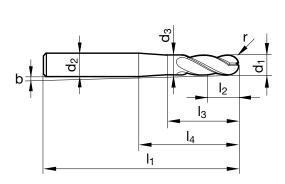
ISO Code	Härte	Schnitttiefe	Schnittbreite**	Schnittgeschw.			fz (mm/z) l	oei Nenn	-Ø		
150 Code	пагіе	a _p	a _e	Vc	2	3	4	6	8	10	12	16
Р	≤ 850 N/mm ²	0,1xd	0,1xd	200	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Stahl	850 - 1400 N/mm ²	0,1xd	0,1xd	180	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
M Rostfreier	≤ 750 N/mm ²	0,1xd	0,1xd	140	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Stahl	≥ 750 N/mm ²	0,05xd	0,1xd	100	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
N Aluminium	≤ 7% Si	0,15xd	0,1xd	280	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
S Ti-Sonderl.	≤ 1300 N/mm ²	0,05xd	0,1xd	90	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
H Gehärt. Stahl	bis 54 HRC	0,05xd	0,05xd	140	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1

^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" und bei Hartbearbeitung Luftkühlung empfohlen.

^{**} Beim HSC-Schlichten mit a_e = 0,02xd kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden.

mit Zentrumschnitt





Schneidstoff Oberfläche Rabattgruppe Artikel-Nr.

Code-Nr.	d1 h8	d2 h6	d3	l1	12	13	14	r	β	Z
Code-Ivr.	mm	mm	mm	mm	mm	mm	mm	mm	0	
2,000	2,000	6,000	1,900	57,00	3,00	10,00	21,00	1,00	5,80	4
3,000	3,000	6,000	2,800	57,00	3,50	14,00	21,00	1,50	4,40	4
4,000	4,000	6,000	3,800	57,00	4,00	16,00	21,00	2,00	3,10	4
5,000	5,000	6,000	4,800	57,00	5,00	18,00	21,00	2,50	1,60	4
6,000	6,000	6,000	5,700	57,00	6,00	20,00	21,00	3,00	-	4
8,000	8,000	8,000	7,700	63,00	7,00	26,00	27,00	4,00	-	4
10,000	10,000	10,000	9,500	72,00	8,00	30,00	32,00	5,00	-	4
12,000	12,000	12,000	11,500	83,00	10,00	36,00	38,00	6,00	-	4

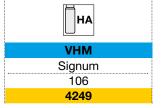
Verfügbarkeit
•
•

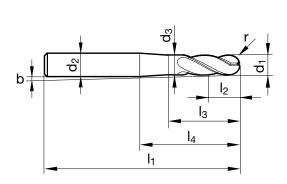
ISO Code	Härte	Schnitttiefe	Schnittbreite**	Schnittgeschw.			fz (mm/z) k	oei Nenn	-Ø		
150 Code	пагіе	a _p	a _e	Vc	2	3	4	6	8	10	12	16
Р	≤ 850 N/mm ²	0,1xd	0,1xd	200	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Stahl	850 - 1400 N/mm ²	0,1xd	0,1xd	180	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
M Rostfreier	≤ 750 N/mm ²	0,1xd	0,1xd	140	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Stahl	≥ 750 N/mm ²	0,05xd	0,1xd	100	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
N Aluminium	≤ 7% Si	0,15xd	0,1xd	280	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
S Ti-Sonderl.	≤ 1300 N/mm ²	0,05xd	0,1xd	90	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
H Gehärt. Stahl	bis 54 HRC	0,05xd	0,05xd	140	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1

 $^{^{\}star} \ \text{Für optimale Spanabfuhr und Standweg wird Peripheriek\"{u}hlung "G\"{u}hrojet" und bei Hartbearbeitung Luftk\"{u}hlung empfohlen.}$

^{**} Beim HSC-Schlichten mit $a_e = 0.02xd$ kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden.

mit Zentrumschnitt





Schneidstoff Oberfläche Rabattgruppe Artikel-Nr.

Code-Nr.	d1 h8	d2 h6	d3	I1	12	13	14	r	β	Z
Code-Ivr.	mm	mm	mm	mm	mm	mm	mm	mm	٥	
2,000	2,000	6,000	1,900	80,00	3,00	10,00	40,00	1,00	3,00	4
3,000	3,000	6,000	2,800	80,00	3,50	14,00	40,00	1,50	2,30	4
4,000	4,000	6,000	3,800	80,00	4,00	16,00	40,00	2,00	1,60	4
5,000	5,000	6,000	4,800	100,00	5,00	18,00	50,00	2,50	0,70	4
6,000	6,000	6,000	5,700	100,00	6,00	49,00	50,00	3,00	-	4
8,000	8,000	8,000	7,700	100,00	7,00	49,00	50,00	4,00	-	4
10,000	10,000	10,000	9,500	100,00	8,00	48,00	50,00	5,00	-	4
12,000	12,000	12,000	11,500	120,00	10,00	68,00	70,00	6,00	-	4

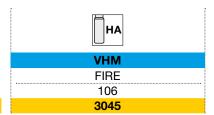
Verfügbarkeit	
•	

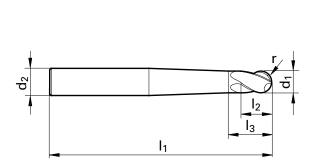
ISO Code	Härte	Schnitttiefe	Schnittbreite**	Schnittgeschw.			fz (mm/z) k	oei Nenn	ı-Ø		
150 Code	пагіе	ap	a _e	Vc	2	3	4	6	8	10	12	16
Р	≤ 850 N/mm ²	0,1xd	0,1xd	200	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Stahl	850 - 1400 N/mm ²	0,1xd	0,1xd	180	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
M Rostfreier	≤ 750 N/mm ²	0,1xd	0,1xd	140	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Stahl	≥ 750 N/mm ²	0,05xd	0,1xd	100	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
N Aluminium	≤ 7% Si	0,15xd	0,1xd	280	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
S Ti-Sonderl.	≤ 1300 N/mm ²	0,05xd	0,1xd	90	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
H Gehärt. Stahl	bis 54 HRC	0,05xd	0,05xd	140	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1

^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" und bei Hartbearbeitung Luftkühlung empfohlen. ** Beim HSC-Schlichten mit $a_e = 0,02xd$ kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden.

Vollradius-Kopierfräser GF 200 B

mit Zentrumschnitt




48

Schneidstoff Oberfläche Rabattgruppe Artikel-Nr.

Code-Nr.	d1 h10	d2 h6	l1	12	13	r	Z
Code-ivi.	mm	mm	mm	mm	mm	mm	
3,000	3,000	6,000	75,00	4,00	6,50	1,50	2
4,000	4,000	6,000	75,00	5,00	7,50	2,00	2
5,000	5,000	6,000	75,00	6,00	8,50	2,50	2
6,000	6,000	8,000	75,00	8,00	10,50	3,00	2
8,000	8,000	10,000	100,00	12,00	14,50	4,00	2
10,000	10,000	12,000	100,00	15,00	17,50	5,00	2

V	erfügl	barke	eit	

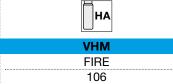
ISO Code	Härte	Schnitttiefe	Schnittbreite**	Schnittgeschw.			fz (mm/z) k	ei Nenn	-Ø		
150 Code	пагіе	a _p	a _e	Vc	2	3	4	6	8	10	12	16
Р	≤ 850 N/mm ²	0,1xd	0,1xd	200	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Stahl	850 - 1400 N/mm ²	0,1xd	0,1xd	180	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
M Rostfreier	≤ 750 N/mm ²	0,1xd	0,1xd	140	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Stahl	≥ 750 N/mm ²	0,05xd	0,1xd	100	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
N Aluminium	≤ 7% Si	0,15xd	0,1xd	280	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
S Ti-Sonderl.	≤ 1300 N/mm ²	0,05xd	0,1xd	90	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
H Gehärt. Stahl	bis 54 HRC	0,05xd	0,05xd	140	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1

^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" und bei Hartbearbeitung Luftkühlung empfohlen.

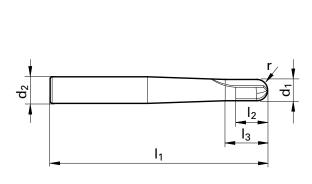
** Beim HSC-Schlichten mit a_e = 0,02xd kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden.

Vollradius-Kopierfräser GF 200 B

mit Zentrumschnitt



3044



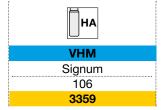
Code-Nr.	d1 h10	d2 h6	I1	12	13	r	Z
Code-IVI.	mm	mm	mm	mm	mm	mm	
3,000	3,000	6,000	75,00	4,00	6,50	1,50	2
4,000	4,000	6,000	75,00	5,00	7,50	2,00	2
5,000	5,000	6,000	75,00	6,00	8,50	2,50	2
6,000	6,000	8,000	75,00	8,00	10,50	3,00	2
8,000	8,000	10,000	100,00	12,00	14,50	4,00	2
10,000	10,000	12,000	100,00	15,00	17,50	5,00	2

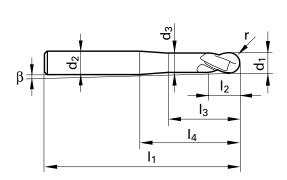
Verfügbarkeit

ISO Code	Härte	Schnitttiefe	Schnittbreite**	Schnittgeschw.			fz (mm/z) k	oei Nenn	ı-Ø		
150 Code	пагіе	ap	a _e	Vc	2	3	4	6	8	10	12	16
Р	≤ 850 N/mm ²	0,1xd	0,1xd	200	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Stahl	850 - 1400 N/mm ²	0,1xd	0,1xd	180	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
M Rostfreier	≤ 750 N/mm ²	0,1xd	0,1xd	140	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
Stahl	≥ 750 N/mm ²	0,05xd	0,1xd	100	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
N Aluminium	≤ 7% Si	0,15xd	0,1xd	280	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
S Ti-Sonderl.	≤ 1300 N/mm ²	0,05xd	0,1xd	90	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
H Gehärt. Stahl	bis 54 HRC	0,05xd	0,05xd	140	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1

^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" und bei Hartbearbeitung Luftkühlung empfohlen. ** Beim HSC-Schlichten mit $a_e = 0,02xd$ kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden.

mit Zentrumschnitt





Schneidstoff Oberfläche Rabattgruppe Artikel-Nr.

Code-Nr.	d1 h8	d2 h6	d3	l1	12	13	14	r	β	Z
Code-Mr.	mm	mm	mm	mm	mm	mm	mm	mm	0	
0,500	0,500	3,000	0,400	38,00	0,75	2,60	10,00	0,25	7,40	2
0,800	0,800	3,000	0,700	38,00	1,20	3,50	10,00	0,40	6,60	2
1,000	1,000	3,000	0,900	38,00	1,50	4,00	10,00	0,50	6,10	2
1,500	1,500	3,000	1,400	38,00	2,25	5,50	10,00	0,75	4,70	2
2,000	2,000	6,000	1,900	57,00	3,00	9,40	21,00	1,00	5,80	2
3,000	3,000	6,000	2,700	57,00	5,00	11,60	21,00	1,50	4,40	2
4,000	4,000	6,000	3,700	57,00	6,00	14,50	21,00	2,00	3,10	2
5,000	5,000	6,000	4,700	57,00	8,00	17,30	21,00	2,50	1,60	2
6,000	6,000	6,000	5,700	57,00	9,00	20,00	21,00	3,00	-	2
8,000	8,000	8,000	7,700	63,00	12,00	26,00	27,00	4,00	-	2
10,000	10,000	10,000	9,500	72,00	15,00	30,00	32,00	5,00	-	2
12,000	12,000	12,000	11,500	83,00	18,00	36,00	38,00	6,00	-	2
16,000	16,000	16,000	15,500	92,00	24,00	42,00	44,00	8,00	-	2

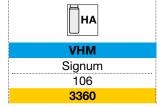
Verfügbarkeit
•
•
•
•

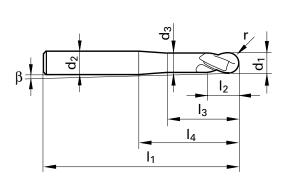
Schilltower	te. HSC-Ropie	i ii as c ii										
ISO Code	Härte	Schnitttiefe	Schnittbr.**	Schnittgeschw.			fz	(mm/z) ł	oei Nenn	-Ø		
130 Code	l lai te	a _p	a _e	Vc	2	3	4	6	8	10	12	16
P	≤ 850 N/mm ²	-	-	-	-	-	-	-	-	-	-	-
Stahl	850 - 1400 N/mm²	0,1xd	0,1xd	200	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
K Guss	≥ 240 HB 30	0,1xd	0,1xd	200	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
H Gehärteter	≤ 54 HRC	0,05xd	0,1xd	140	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
Stahl	≤ 63 HRC	0,02xd	0,1xd	80	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1

^{*} Für optimale Spanabfuhr und Standweg ist Trockenbearbeitung mit Luftkühlung empfohlen.

^{**} Beim HSC-Schlichten mit a_e = 0,2xd kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden.

mit Zentrumschnitt





Schneidstoff Oberfläche Rabattgruppe Artikel-Nr.

Co	de-Nr.	d1 h8	d2 h6	d3	I1	I2	13	14	r	β	Z
CO	ue-ivi.	mm	mm	mm	mm	mm	mm	mm	mm	0	
3	3,000	3,000	6,000	2,700	75,00	5,00	20,00	39,00	1,50	2,30	2
4	,000	4,000	6,000	3,700	75,00	6,00	20,00	39,00	2,00	1,60	2
5	5,000	5,000	6,000	4,700	75,00	8,00	20,00	39,00	2,50	0,80	2
6	5,000	6,000	6,000	5,700	75,00	9,00	38,00	39,00	3,00	-	2
8	3,000	8,000	8,000	7,700	100,00	12,00	63,00	64,00	4,00	-	2
10	0,000	10,000	10,000	9,500	100,00	15,00	58,00	60,00	5,00	-	2
12	2,000	12,000	12,000	11,500	150,00	18,00	103,00	105,00	6,00	-	2
16	6,000	16,000	16,000	15,500	150,00	24,00	100,00	102,00	8,00	-	2

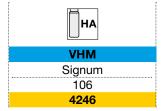
Verfügbarkeit
•
•
•

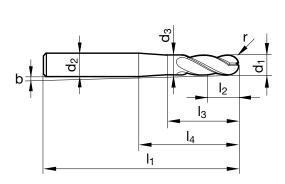
Schilltower	te. HSC-Ropie	i ii as c ii										
ISO Code	Härte	Schnitttiefe	Schnittbr.**	Schnittgeschw.			fz	(mm/z) ł	oei Nenn	-Ø		
130 Code	l lai te	a _p	a _e	Vc	2	3	4	6	8	10	12	16
P	≤ 850 N/mm ²	-	-	-	-	-	-	-	-	-	-	-
Stahl	850 - 1400 N/mm²	0,1xd	0,1xd	200	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
K Guss	≥ 240 HB 30	0,1xd	0,1xd	200	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
H Gehärteter	≤ 54 HRC	0,05xd	0,1xd	140	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
Stahl	≤ 63 HRC	0,02xd	0,1xd	80	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1

^{*} Für optimale Spanabfuhr und Standweg ist Trockenbearbeitung mit Luftkühlung empfohlen.

^{**} Beim HSC-Schlichten mit a_{e} = 0,2xd kann die Schnittgeschwindigkeit v_{c} um 50 % erhöht werden.

mit Zentrumschnitt





Schneidstoff Oberfläche Rabattgruppe Artikel-Nr.

Code-Nr.	d1 h8	d2 h6	d3	l1	12	13	14	r	β	Z
Code-Mr.	mm	mm	mm	mm	mm	mm	mm	mm	٥	
2,000	2,000	6,000	1,900	57,00	3,00	10,00	21,00	1,00	5,80	4
3,000	3,000	6,000	2,800	57,00	3,50	14,00	21,00	1,50	4,40	4
4,000	4,000	6,000	3,800	57,00	4,00	16,00	21,00	2,00	3,10	4
5,000	5,000	6,000	4,800	57,00	5,00	18,00	21,00	2,50	1,60	4
6,000	6,000	6,000	5,700	57,00	6,00	20,00	21,00	3,00	-	4
8,000	8,000	8,000	7,700	63,00	7,00	26,00	27,00	4,00	-	4
10,000	10,000	10,000	9,500	72,00	8,00	30,00	32,00	5,00	-	4
12,000	12,000	12,000	11,500	83,00	10,00	36,00	38,00	6,00	-	4

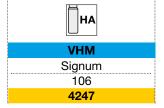
Verfügbarkeit	
•	
•	
•	

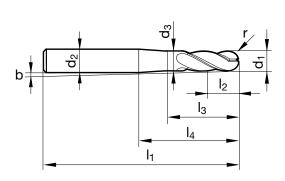
Schilltwei	te. 1130-Ropie	i ii aseii										
ISO Code	Härte	Schnitttiefe	Schnittbr.**	Schnittgeschw.			fz	(mm/z) l	oei Nenn	-Ø		
130 Code	пане	a _p	a _e	Vc	2	3	4	6	8	10	12	16
P	≤ 850 N/mm ²	-	-	-	-	-	-	-	-	-	-	-
Stahl	850 - 1400 N/mm²	0,1xd	0,1xd	200	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
K Guss	≥ 240 HB 30	0,1xd	0,1xd	200	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
H Gehärteter	≤ 54 HRC	0,05xd	0,1xd	140	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
Stahl	≤ 63 HRC	0,02xd	0,1xd	80	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1

^{*} Für optimale Spanabfuhr und Standweg ist Trockenbearbeitung mit Luftkühlung empfohlen.

^{**} Beim HSC-Schlichten mit a_e = 0,2xd kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden.

mit Zentrumschnitt



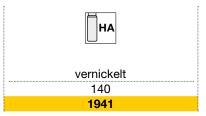


Schneidstoff Oberfläche Rabattgruppe Artikel-Nr.

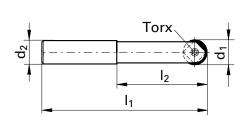
Code-Nr.	d1 h8	d2 h6	d3	I1	12	13	14	r	β	Z
Code-Ivr.	mm	mm	mm	mm	mm	mm	mm	mm	٥	
2,000	2,000	6,000	1,900	80,00	3,00	10,00	40,00	1,00	3,00	4
3,000	3,000	6,000	2,800	80,00	3,50	14,00	40,00	1,50	2,30	4
4,000	4,000	6,000	3,800	80,00	4,00	16,00	40,00	2,00	1,60	4
5,000	5,000	6,000	4,800	100,00	5,00	18,00	50,00	2,50	0,70	4
6,000	6,000	6,000	5,700	100,00	6,00	49,00	50,00	3,00	-	4
8,000	8,000	8,000	7,700	100,00	7,00	49,00	50,00	4,00	-	4
10,000	10,000	10,000	9,500	100,00	8,00	48,00	50,00	5,00	-	4
12,000	12,000	12,000	11,500	120,00	10,00	68,00	70,00	6,00	-	4

Verfügbarkeit	
•	
•	

Schilltwer	te: nac-kopie						_					
ISO Code	Härte	Schnitttiefe	Schnittbr.**	Schnittgeschw.			fz	(mm/z) t	oei Nenn	-Ø		
130 Code	пагіе	ap	a _e	Vc	2	3	4	6	8	10	12	16
P	≤ 850 N/mm ²	-	-	-	-	-	-	-	-	-	-	-
Stahl	850 - 1400 N/mm²	0,1xd	0,1xd	200	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
K Guss	≥ 240 HB 30	0,1xd	0,1xd	200	0,03	0,04	0,045	0,05	0,07	0,1	0,12	0,15
H Gehärteter	≤ 54 HRC	0,05xd	0,1xd	140	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1
Stahl	≤ 63 HRC	0,02xd	0,1xd	80	0,02	0,03	0,035	0,04	0,05	0,07	0,08	0,1


^{*} Für optimale Spanabfuhr und Standweg ist Trockenbearbeitung mit Luftkühlung empfohlen.

 $^{^{\}star\star}$ Beim HSC-Schlichten mit ae = 0,2xd kann die Schnittgeschwindigkeit vc um 50 % erhöht werden.


Gesenkfräser-Halter GF 200 WP

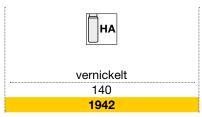
Schneidstoff Oberfläche Rabattgruppe Artikel-Nr.

Wendeschneidplatten Art.-Nr. 1947 oder 2520 separat bestellen

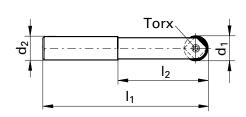
Code-Nr.	d1 ±0,015	d2 h6	I1	12	Torx
Code-Mr.	mm	mm	mm	mm	
10,000	10,000	10,000	95,20	45,00	T8
12,000	12,000	12,000	110,20	50,00	T15
16,000	16,000	16,000	125,00	65,00	T20
20,000	20,000	20,000	140,00	75,00	T20
25,000	25,000	25,000	165,00	90,00	T30
32,000	32,000	32,000	185,00	105,00	T30

Verfügbarkeit	
•	

ISO Code	Härte	Schnitttiefe	Schnittbreite**	Schnittgeschw.			fz (mn	n/z) bei N	enn-Ø		
150 Code	пагіе	a _p	a _e	Vc	8	10	12	16	20	25	32
Р	≤ 850 N/mm ²	0,04xd	0,05xd	200	0,07	0,1	0,12	0,15	0,15	0,18	0,22
Stahl	850 - 1400 N/mm ²	0,03xd	0,05xd	180	0,07	0,1	0,12	0,15	0,15	0,17	0,2
M Rostfreier	≤ 750 N/mm ²	0,03xd	0,05xd	140	0,07	0,1	0,12	0,15	0,15	0,17	0,2
Stahl	≥ 750 N/mm ²	0,02xd	0,05xd	100	0,05	0,00	0,08	0,1	0,1	0,12	0,15
N Aluminium	≤ 7% Si	0,06xd	0,05xd	280	0,07	0,1	0,12	0,15	0,15	0,2	0,25
S Ti-Sonderl.	≤ 1300 N/mm ²	0,02xd	0,05xd	90	0,05	0,07	0,08	0,1	0,1	0,12	0,15
H Gehärt. Stahl	bis 54 HRC	0,03xd	0,05xd	140	0,05	0,07	0,08	0,1	0,1	0,12	0,15


^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" und bei Hartbearbeitung Luftkühlung empfohlen.

^{**} Beim HSC-Schlichten mit a_e = 0,02xd kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden.


Gesenkfräser-Halter GF 200 WP

Schneidstoff Oberfläche Rabattgruppe Artikel-Nr.

Wendeschneidplatten Art.-Nr. 1947 oder 2520 separat bestellen

Codo Nu	d1 ±0,015	d2 h6	I1	12	Torx
Code-Nr.	mm	mm	mm	mm	
10,000	10,000	12,000	150,20	35,00	T8
12,000	12,000	16,000	160,20	60,00	T15
16,000	16,000	20,000	174,50	70,00	T20
20,000	20,000	25,000	189,50	80,00	T20
25,000	25,000	32,000	210,00	100,00	T30
32,000	32,000	40,000	240,00	125,00	T30

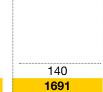
Verfügbarkeit	
•	

ISO Code	Härte	Schnitttiefe	Schnittbreite**	Schnittgeschw.			fz (mn	n/z) bei N	enn-Ø		
150 Code	пагіе	a _p	a _e	Vc	8	10	12	16	20	25	32
P	≤ 850 N/mm ²	0,04xd	0,05xd	200	0,07	0,1	0,12	0,15	0,15	0,18	0,22
Stahl	850 - 1400 N/mm ²	0,03xd	0,05xd	180	0,07	0,1	0,12	0,15	0,15	0,17	0,2
M Rostfreier	≤ 750 N/mm ²	0,03xd	0,05xd	140	0,07	0,1	0,12	0,15	0,15	0,17	0,2
Stahl	≥ 750 N/mm ²	0,02xd	0,05xd	100	0,05	0,00	0,08	0,1	0,1	0,12	0,15
N Aluminium	≤ 7% Si	0,06xd	0,05xd	280	0,07	0,1	0,12	0,15	0,15	0,2	0,25
S Ti-Sonderl.	≤ 1300 N/mm ²	0,02xd	0,05xd	90	0,05	0,07	0,08	0,1	0,1	0,12	0,15
H Gehärt. Stahl	bis 54 HRC	0,03xd	0,05xd	140	0,05	0,07	0,08	0,1	0,1	0,12	0,15

 ^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" und bei Hartbearbeitung Luftkühlung empfohlen.
 ** Beim HSC-Schlichten mit a_e = 0,02xd kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden.

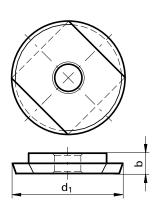
Wendeschneidplatten rund

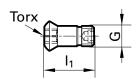
Spannschrauben für Gesenkfräser-Halter


48 HRC

> Schneidstoff Oberfläche Rabattgruppe Artikel-Nr.

Cermet	VHM
blank	FIRE
141	141
1947	2520


Schneidstoff Oberfläche Rabattgruppe Artikel-Nr.



Code-Nr.	d1 ±0,015	b
Code-Mr.	mm	mm
10,000	10,000	2,500
12,000	12,000	2,500
16,000	16,000	3,200
20,000	20,000	4,000
25,000	25,000	4,600
32,000	32,000	5,000

Verfügbarkeit				
•	•			
•	•			
_				

G	l1	Torx
	mm	
M 3	8,50	T8
M 4 X0,5	10,20	T15
M 5 X0,5	12,80	T20
M 5 X0,5	15,40	T20
M 6 X0,75	20,40	T30
M 8 X0,75	24,80	T30
	M 3 M 4 X0,5 M 5 X0,5 M 5 X0,5 M 6 X0,75	mm M 3 8,50 M 4 X0,5 10,20 M 5 X0,5 12,80 M 5 X0,5 15,40 M 6 X0,75 20,40

Verfügbarkeit
•
•
•
•

ISO Code	Härte	Schnitttiefe	Schnittbreite**	Schnittgeschw.			fz (mn	n/z) bei N	enn-Ø		
150 Code	пагіе	a _p	a _e	Vc	8	10	12	16	20	25	32
Р	≤ 850 N/mm ²	0,04xd	0,05xd	200	0,07	0,1	0,12	0,15	0,15	0,18	0,22
Stahl	850 - 1400 N/mm ²	0,03xd	0,05xd	180	0,07	0,1	0,12	0,15	0,15	0,17	0,2
M Rostfreier	≤ 750 N/mm ²	0,03xd	0,05xd	140	0,07	0,1	0,12	0,15	0,15	0,17	0,2
Stahl	≥ 750 N/mm ²	0,02xd	0,05xd	100	0,05	0,00	0,08	0,1	0,1	0,12	0,15
N Aluminium	≤ 7% Si	0,06xd	0,05xd	280	0,07	0,1	0,12	0,15	0,15	0,2	0,25
S Ti-Sonderl.	≤ 1300 N/mm ²	0,02xd	0,05xd	90	0,05	0,07	0,08	0,1	0,1	0,12	0,15
H Gehärt. Stahl	bis 54 HRC	0,03xd	0,05xd	140	0,05	0,07	0,08	0,1	0,1	0,12	0,15

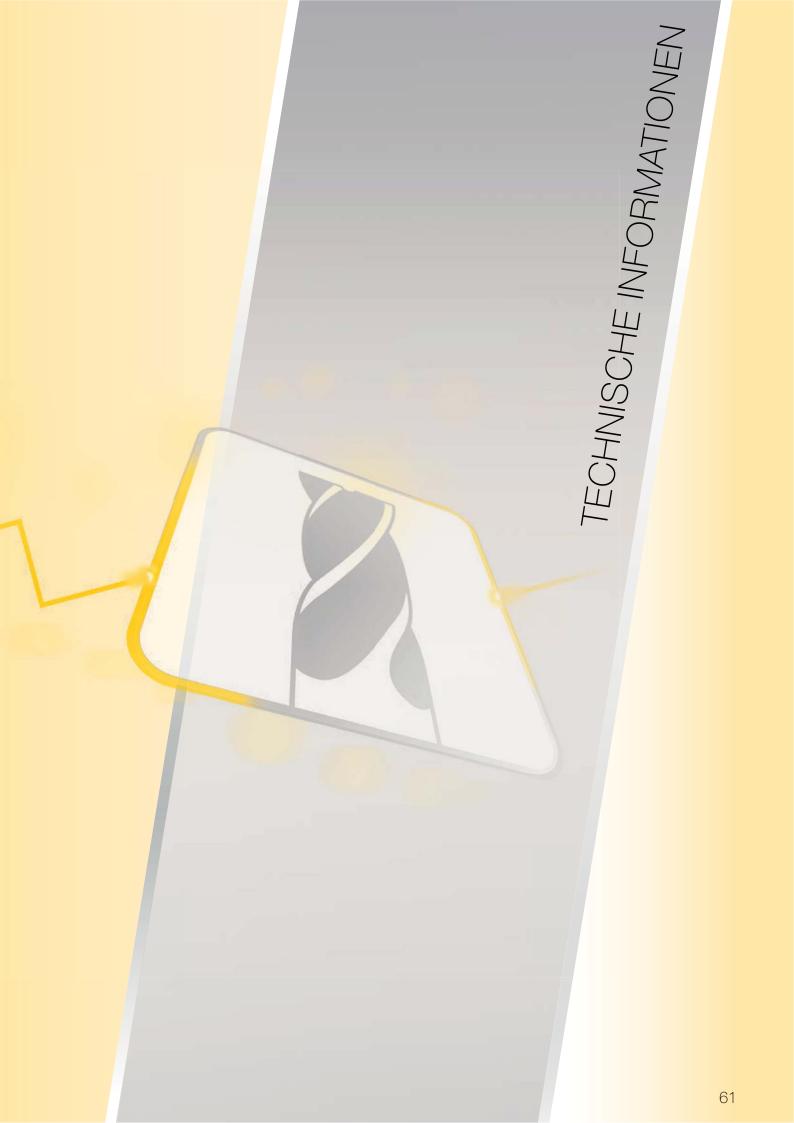
^{*} Für optimale Spanabfuhr und Standweg wird Peripheriekühlung "Gührojet" und bei Hartbearbeitung Luftkühlung empfohlen.

^{**} Beim HSC-Schlichten mit a_e = 0,02xd kann die Schnittgeschwindigkeit v_c um 50 % erhöht werden.

Torx-Schraubendreher

Schneidstoff Oberfläche Rabattgruppe Artikel-Nr.

140 **1612**



	Tami	
Code-Nr.	Torx	Verfügbarkeit
5,001 6,000 7,000	T5 T6 T7	•
7,001 8,000 8,001	T7 T8 T8	
9,001 10,000 10,001	T9 T10 T10	
15,000 15,001 20,001	T15 T15 T20	•
25,000 25,001 30,001	T25 T25 T30	

Gühring GM 300 - HPC-Kraftspannfutter Gut gespannt = gut gefräst!

HPC & HSC - Frässtrategien mit VHM-Schaftfräsern

Ziele: Höhere Wirtschaftlichkeit durch größere Zeitspanvolumen

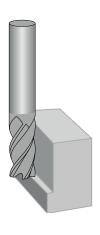
HPC = High Performance Cutting:

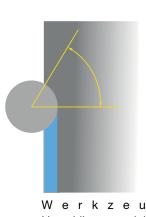
max. Zerspanvolumen/Zeit; stabile Verhältnisse; kurze Ausspannung; hohe Leistung; gute Kühlung

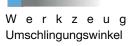
Fräsbearbeitungen mit einem Werkzeug- Umschlingungswinkel von unter 70° und Schnitttiefen von 2-3 x Werkzeugdurchmesser

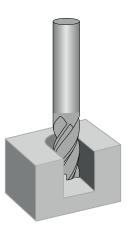
1 machining, Schruppen, Trochoid

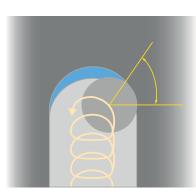
- geringe Schnittbreite (a_e): < 0,4 x d
- hohe Schnitttiefe (ap): bis 2-3 x d
- sehr hohe Zahnvorschübe (fz)
- sehr hohe Schnittgeschwindigkeit (vc)


HSC = High Speed Cutting:


bei hoher Drehzahl/hohem Vorschub; geringe Leistung; geringe Zustellung


Fräsbearbeitungen mit einem Werkzeug- Umschlingungswinkel von unter 37° und Schnitttiefen bis 3 x Werkzeugdurchmesser


Semischruppen, Schlichten und Feinschlichten


- geringste Schnittbreite (ae): <0,15 x d
- hohe Schnitttiefe (ap): bis 3 x d
- hohe Zahnvorschübe (f_z)
- höchste Schnittgeschwindigkeit (vc)

Werkzeug-Umschlingungswinkel

HPC Fräsen - Besäumen

Besäumen von Innen- und Außenkonturen mit hohen axialen Zustellungen (ap) und geringen radialen Zustellungen (ae). Erhöhung der Schnittparameter aufgrund des begrenzten Umschlingungswinkels.

HPC Fräsen - Trochoid / Imachining

Bearbeitung von Nuten oder komplexen Konturen mit hohen axialen Zustellungen (ap) und geringen radialen Zustellungen (a_e). Erhöhung der Schnittparameter aufgrund des begrenzten Umschlingungswinkels. Programmierung über Zyklen oder CAM-Programme wie SolidCAM iMachining.

Funktionsprinzip

- die Verminderung der Kontaktzeit von Werkzeug zu Werkstück führt zu geringerer thermischer Belastung der Schneiden
- die Verkleinerung des Eingriffswinkels zwischen Werkzeug und Werkstück reduziert die Mittenspandicke
- weniger Krafteinwirkung auf Werkzeug, Werkstück und Maschine

Vorteile

- · extreme Erhöhung der Schnittgeschwindigkeit
- deutliche Erhöhung des Zahnvorschubs
- wesentliche Erhöhung des Zeitspanvolumens
- Bearbeiten prozesssicheres von zerspanbaren Materialien
- Erhöhung der Werkzeugstandzeiten
- Maschinen werden geschont

schwer

HPC & HSC – Frässtrategien mit VHM-Schaftfräsern

Richtwerte zur Erhöhung der Schnittwerte

Anwendung	radiale Zustellung in % vom Ø	* f _z Faktor	* v _c Faktor	Umschlingungs- winkel
Nuten	100%	1	1	180°
HPC Schruppen	33%	1,3	1,5	70°
HPC Schruppen	25%	1,5	1,6	60°
HPC Schruppen	20%	1,6	1,7	53°
HPC Schruppen	15%	1,9	1,7	46°
HSC Schruppen	10%	2,3	1,8	37°
HSC Schruppen	5%	3,3	1,9	26°
HSC Schlichten	3%	1,1	2,0	20°
HSC Schlichten	2%	1,4	2,0	18°
HSC Schlichten	1%	2,0	2,1	11°
Feinstschlichten	<1%	1	2	Ziel: min R _z

 $^{^*}$ Basiswert für die Berechnung mit den v_c und f_z Faktoren ist der im Gühring-Navigator angegebene Wert für "Nuten" in der entsprechenden Materialgruppe.

Beispiel: Stahl C45

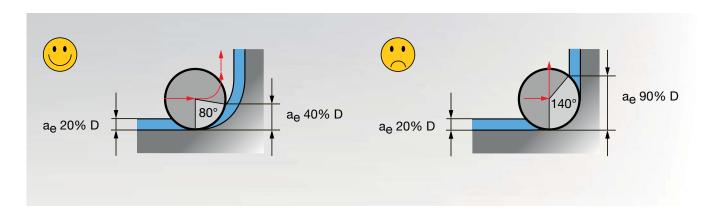
Werkzeug: Fräser-Ø 12 mm

Zustellung: radiale Zustellung (a_e) 3 mm % Berechnung: a_e 3 mm = 25% von Ø 12 mm

Standardwerte: v_C Nuten = 180 m/min, f_Z Nuten = 0,07 mm

Umrechnung: v_c Faktor = 1,6 $\rightarrow v_c$: 180 m/min x 1,6 = v_c 288 m/min

 f_z Faktor = 1,5 \rightarrow f_z : 0,07 mm x 1,5 = f_z 0,105


Erhöhte Werte: v_c 288 m/min / f_z 0,105 mm

S: 7640 min⁻¹ / vf: 4580 mm/min

 a_p : 24 mm a_e : 3 mm \rightarrow Q: 330 cm³/min

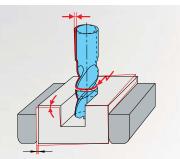
$$Q_{(cm3/min)} = a_{p (mm)} \times a_{e (mm)} \times V_{f (m/min)}$$

Die Erhöhung der Umschlingung in Ecken überlastet die Fräswerkzeuge. Lösung: Der Taschenradius muss wesentlich größer sein als der Fräserradius, um die Umschlingung kleiner 80° zu halten (max. Belastung).

Allgemeine Hinweise

Alle in diesem Katalog angegebenen Schnittwertempfehlungen gelten als Richtwerte ausschließlich für neue oder nach Gühring-Vorschrift nachgeschliffene Werkzeuge. Voraussetzungen sind ferner eine ausreichende Maschinenleistung, optimale Kühlung, optimale Werkstückspannung und eine möglichst hohe Rundlaufgenauigkeit des Werkzeugs und der

Maschinenspindel. Bei abweichenden Bedingungen müssen die Schnittwerte gegenüber unseren Empfehlungen reduziert werden. Zur Beeinflussung der Oberflächenqualität, des Zerspanungsvolumens oder des Standwegs können die Werte ebenfalls angepasst werden.

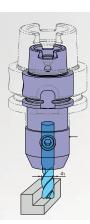

1. Werkstückaufspannung

Standzeitverlust oder Werkzeugbruch durch labile Werkstückaufspannung

• Stabilere Werkstückaufspannung

Alternativ:

- Vorschub reduzieren
- Schnittbreite oder -tiefe verringern

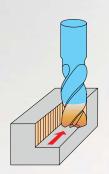

2. Werkzeugspannung

Standzeitverlust oder Werkzeugbruch durch eine labile, nicht spielfreie, verschlissene oder zu kleine/lange/dünne Werkzeugaufnahme

 Neue oder größere Aufnahme bzw. Aufnahme mit höherer Spannkraft und höherer Rundlaufgenauigkeit einsetzen

Alternativ:

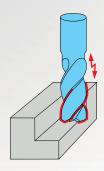
- Schnittwerte reduzieren
- Einspannlänge reduzieren
- Werkzeug mit kleinerem Durchmesser einsetzen
- Spannschrauben auf Verschleiß prüfen


3. Oberflächenqualität

Zu hohe Rauheitswerte R_a/R_z auf der Werkstückoberfläche durch zu hohe Vorschübe bzw. Vorschubgeschwindigkeiten oder Vibrationen

 Werkstückaufspannung und Werkzeugspannung verbessern (siehe Punkte 1 und 2)

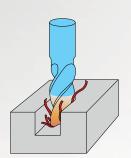
Alternativ:


- Vorschub und Vorschubgeschwindigkeit reduzieren
- Schnittgeschwindigkeit erhöhen

4. Vibrationen

Hoher Werkzeugverschleiß, schlechte Oberflächen am Werkstück und mangelnde Maßhaltigkeit durch Vibrationen

- Werkstückaufspannung und Werkzeugspannung verbessern (siehe Punkte 1 und 2)
- Zahnvorschub erhöhen, da Spanmittendicke zu gering
- Drehzahl verändern
- Frässtrategie ändern, d.h. andere Schnittaufteilung wählen
- Werkzeugauswahl ändern, d.h. Zähnezahl oder Drall verringern

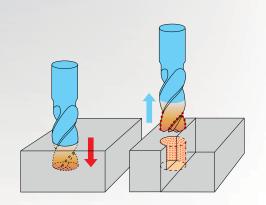

5. Spänestau/Kühlung

Signifikante Standzeitverluste, Ausbrüche der Schneidkanten, Aufbauschneidenbildung oder Verkleben der Nuten durch mangelhafte Spanabfuhr

• Fräser mit Innenkühlung wählen

Alternativ:

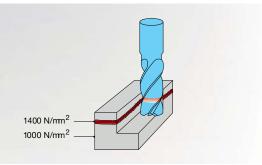
- Peripheriekühlung durch Gührojet GM 300-Spannfutter
- Volumenstrom erhöhen
- Kühlmittelstrom gezielt ausrichten
- Pressluftkühlung vornehmen (je nach Werkzeug und Werkstoff)
- Vorschub verringern
- Schnittaufteilung verändern


6. Entspanen beim Bohren

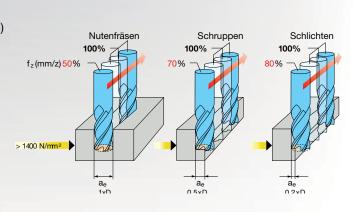
Signifikante Standzeitverluste sowie Ausbrüche der Schneidkanten durch mangelnde Spanabfuhr und thermische Belastung

- Fräser mit Innenkühlung wählen
- Bei Bohrtiefen > 0,5xD stufenweise entspanen

Alternativ:

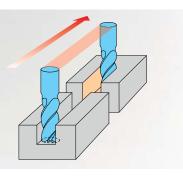

- Peripheriekühlung durch Gührojet GM 300-Spannfutter
- Volumenstrom erhöhen
- Kühlmittelstrom gezielt ausrichten
- Vorschub verringern

7. Thermisch beeinflusste Werkstoffe

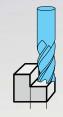

Werkstoffeigenschaften an der Trennfuge entsprechen durch Schweißen oder Schneidbrennen nicht der angegebenen Materialklasse

- Schnittwerte reduzieren
- Werkzeug für Materialien mit höherer Zugfestigkeit wählen

8. Anfahren in gehärteten Werkstoffen


Beim Anfahren in Werkstoffen über 1400 N/mm² (44 HRC) Vorschub v_f (mm/min.) gemäß nebenstehender Grafik reduzieren

9. Standzeitverlust bei unterbrochenen Schnitten

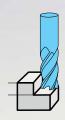

Signifikante Standzeitverluste durch unterbrochene Schnitte (insbesondere bei Fräswinkeln von 90°)

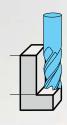
- Schnittaufteilung verändern
- Vorschub beim Ein- und Austritt reduzieren
- Anfahrwinkel stumpfer wählen

10. Vorschubanpassung: Änderung der Schnittbreite

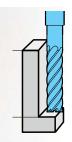
- Bei Veränderung der Schnittbreite a_e muss der Vorschub gemäß nebenstehender Grafik korrigiert werden
- Schnittgeschwindigkeit oder Drehzahl bleiben unverändert
- Ändert sich auch die Schnitttiefe ap gilt eine doppelte Reduktion!

 $a_e = 1 \times D$ $f_z = 25 \%$


 $a_e = 0.5 \times D$ $f_7 = 50 \%$


 $a_e = 0.25 \times D$ $f_z = 100 \%$

11. Vorschubanpassung: Änderung der Schnitttiefe


- Bei Veränderung der Schnitttiefe ap muss der Vorschub gemäß nebenstehender Grafik korrigiert werden
- Schnittgeschwindigkeit oder Drehzahl bleiben bei Schnitttiefen bis 3xD unverändert und müssen erst darüber angepasst werden
- Ändert sich auch die Schnittbreite a_e gilt eine doppelte Reduktion!

 $a_p = 1 \times D$ $f_z = 100 \%$

 $a_p = 2 \times D$ $f_z = 50 \%$

 $a_p = 3 \times D$ $f_z = 25 \%$

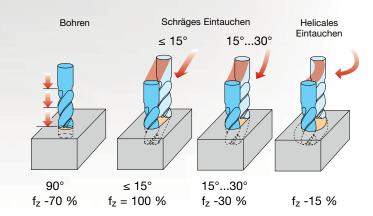
12. Eintauchstrategien

Beim Bohren:

- Vorschub v_f (mm/min.) reduzieren
- Bei Bohrtiefen > 0,5xD oder beim Übergang zur radialen Bearbeitung zusätzlich entspanen

Achtung: Bruchgefahr durch abrupten Lastanstieg!

Schräges Eintauchen bis 15°-Schräge (bevorzugt):


• Vorschub v_f (mm/min.) muss nicht reduziert werden

Schräges Eintauchen mit 15°- bis 30°-Schräge:

 Vorschub v_f (mm/min.) gemäß nebenstehender Grafik reduzieren

Helikales Eintauchen:

- Beim helikalen Eintauchen oder Eintauchen auf einer Kreisbahn empfehlen wir eine Zustellung von 0,1 bis 0,2xD pro Umlauf
- Vorschub v_f (mm/min.) gemäß nebenstehender Grafik reduzieren
- Bohrungsdurchmesser von vorzugsweise 1,8xD wählen

13. HSC Fräsen mit Vollradius-Kopierfräsern

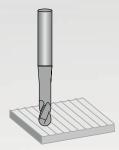
HSC = High Speed Cutting:

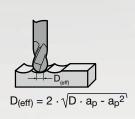
Fräsbearbeitungen mit sehr geringen Zustellungen mit Berücksichtigung des effektiven Werkzeugdurchmessers.

3D-Bearbeitungen mit Kugel- oder Torusfräsern.

- geringe Schnittbreite (ae)
- geringe Schnitttiefe (ap)
- hohe Zahnvorschübe (fz)
- sehr hohe Schnittgeschwindigkeit (V_C)

Funktionsprinzip und Vorteile

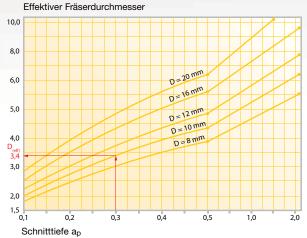

Berechnung des Effektiv-Werkzeudurchmessers

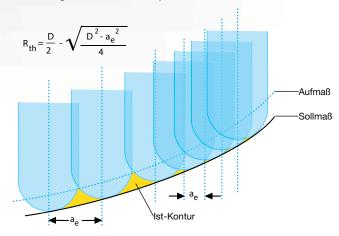

- Anpassung der Drehzahl auf den Effektiv-Werkzeugdurchmesser
- Erhöhung des Gesamtvorschubs
- Verbesserung der Oberflächenqualität

Betrachtung des Eingriffwinkels / Zeilenbreite

• Anpassung der Zahnvorschübe an die geforderte Oberflächenqualität

Bei Schnitttiefen ap < 0,2xD muss der tatsächlich im Eingriff befindliche Effektivdurchmesser Deff zur Berechnung der Drehzahl verwendet werden. Dieser ergibt sich bei nicht angestellter Spindel gemäß nebenstehender Grafik. Zur Erhöhung des Standwegs empfehlen wir eine Bearbeitung mit gekippter Spindel.




Im Zentrum des Werkzeuges ist die Schnittgeschwindigkeit = 0. Standweg und Oberflächenqualität sind nicht optimal.

Der Kugelfräser steht senkrecht zur Bearbeitungsfläche.

Beispiel: Bei einem Vollradius-Kopierfräser Ø 10 mm und einer Schnitttiefe ap von 0,3 mm resultiert ein effektiver Durchmesser D(eff) = 3,4 mm Dieser D(eff) ist zur Berechnung der Schnittgeschwindigkeit Vc zu verwenden

Der Kugelfräser steht schräg angestellt zur Bearbeitungsfläche. Das Zentrum des Werkzeuges nicht im Einsatz. Standweg und Oberflächenqualität verbessert sich.

Die Reduzierung der Schnittbreite ae führt zu einer Verbesserung der Oberflächenqualität am Werkstück (geringere Rautiefe).

14. HSC-Fräsen mit Eckradius-Kopierfräsern / Torusfräsen

HSC-Fräsen - Torusfräser

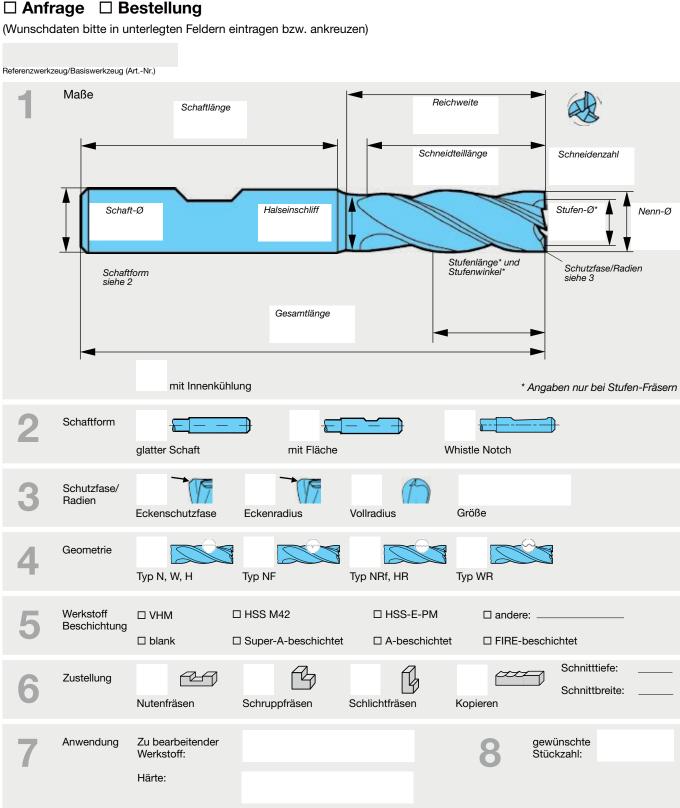
3D-Bearbeitung mit Torusfräser.

Eingriff des Werkzeuges überwiegend am Eckradius. Verbesserung der Oberflächenqualität und Standwege. Vorteile bei der 3D-Bearbeitung auf 3-Achsmaschinen in flachen Formbereichen.

Härtevergleich

Rm (N/mm²)	HRC	HB30	HV10
240		71	75
255		76	80
270		81	85
285		86	90
305		90	95
320		95	100
335		100	105
350		105	110
370		109	115
385		114	120
400		119	125
415		124	130
430		128	135
450		133	140
465		138	145
480		143	150
495		143	155
510		152	160
530		157	165
545		162	170
560		166	175
575		171	180
595		176	185
610		181	190
625		185	195
640		190	200
660		195	205
675		199	210
690		204	215
705		209	220
720		214	225
			230
740		219	
755		223	235
770		228	240
785		233	245
800	22	238	250
820	23	242	255
835	24	247	260
860	25	255	268
870	26	258	272
900	27	266	280
920	28	273	287
940	29	278	293
970	30	287	302
995	31	295	310
1020	32	301	317
1050	33	311	327
1080	34	319	336
1110	35	328	345
1140	36	337	355
1170	37	346	364

Rm (N/mm²)	HRC	HB30	HV10
1200	38	354	373
1230	39	363	382
1260	40	372	392
1300	41	383	403
1330	42	393	413
1360	43	402	423
1400	44	413	434
1440	45	424	446
1480	46	435	458
1530	47	449	473
1570	48	460	484
1620	49	472	497
1680	50	488	514
1730	51	501	527
1790	52	517	544
1845	53	532	560
1910	54	549	578
1980	55	567	596
2050	56	584	615
2140	57	607	639
2180	58	622	655
	59		675
	60		698
	61		720
	62		745
	63		773
	64		800
	65 66		829
	66 67		864 900
	68		940
	00		940


Formeln

Symbol	Beschreibung	metrisch	Formeln
z	Zähnezahl		
D	Fräserdurchmesser	mm	
a _p	Schnitttiefe	mm	
a _e	Schnittbreite	mm	
lf	Fräslänge	mm	
n	Umdrehung pro min	U/min	$n = \frac{v_c \cdot 1000}{\pi \cdot D}$
v _c	Schnittgeschwindigkeit	m/min	$v_C = \frac{\pi \cdot D \cdot n}{1000}$
Vf	Vorschub pro min	mm	$v_f = n \cdot z \cdot f_z$
f _z	Vorschub pro Zahn	mm	$f_Z = \frac{V_f}{n \cdot z}$
f/U	Vorschub pro Umdrehung	mm	$f/U = \frac{Vf}{n}$
f/U	Vorschub pro Umdrehung	mm	$f/U = f_z \cdot z$
Q	Spanvolumen	cm ³ /min	$Q = \frac{a_p \cdot a_e \cdot v_f}{1000}$
т	Bearbeitungszeit	min	$T = \frac{I_f}{V_f}$
hm	Mittenspandicke	mm	$hm = fz \cdot \sqrt{\frac{a_e}{D}}$
D _(eff)	Effektiver Durchmesser Effektiver Durchmesser	mm	$D_{(eff)} = 2 \cdot \sqrt{D \cdot a_p - a_p^2}$
	bei Kippwinkel	mm	$D_{(eff)} = D \cdot \sin \left[\beta + arc \cos \left(\frac{D - 2a_p}{D} \right) \right]$
R _{th}	Rautiefe	mm	$R_{th} = \frac{D}{2} = \sqrt{\frac{D^2 - a_e^2}{4}}$
Z _b	Optimale Zeilenbreite beim Torusfräsen	mm	$Z_b = \frac{D - 2 \times R}{2}$

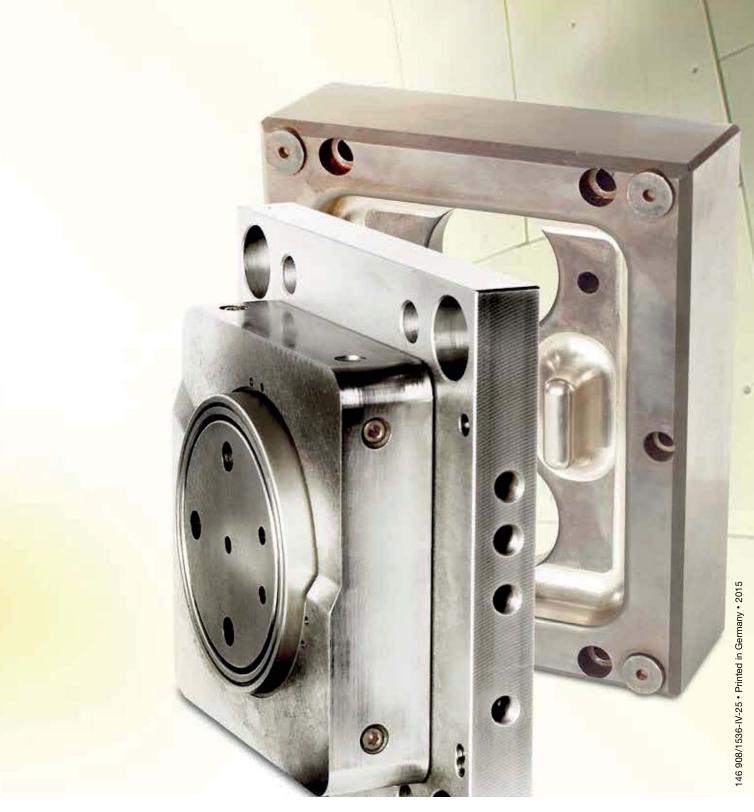
Fragebogen Sonderfräser

Kunden-Nr.	Neukunde	Bestellnummer	
Firma		Ansprechpartner	
Straße/Hausnummer		PLZ/Ort	Ansprechpartner bei Gühring
Telefon		Telefax	
Datum		Unterschrift	

☐ Anfrage ☐ Bestellung

Gühring GM 300 GÜHROJET

Werkzeugaufnahmen mit Peripheriekühlung



Die Vorteile im Überblick

- hohe Prozesssicherheit durch gute Spanabfuhr
- bessere Kühlschmierung bei Werkzeugen ohne Innenkühlung
- Peripheriekühlung GühroJet für perfekten Spänetransport beim Fräsen
- kurze und stabile Zylinderschaftaufnahme "Weldon" zum HPC-Schruppfräsen
- HSC-Fräsen mit präzise rundlaufendem Schrumpffutter

GUHRING

Gühring KG

Postfach 100247 · 72423 Albstadt Herderstraße 50-54 · 72458 Albstadt Tel. (0 74 31) 17-0 Fax (0 74 31) 17-21279

info@guehring.de www.guehring.com

