GUHRING

RF 100 Speed

SRF 100 CHSPEED RF 100 July 100

DIE NEUE GTC-KRAFT

Höchste Zeitspanvolumen bei hervorragender Prozesssicherheit

Insbesondere bei der Bearbeitung sehr zäher Werkstoffe ist eine Erhöhung der Schnittgeschwindigkeit unter Berücksichtigung der Prozesssicherheit nur begrenzt möglich. Durch die erhöhte Zähnezahl des 5 Speed und 7 Speed können auch in diesen schwer zerspanbaren Materialien hohe Zeitspanvolumen bei stabiler Prozesssicherheit realisiert werden.

- // Hochleistungsschruppen auch bei hohen Schnitttiefen
- // maximale Vorschübe für große Zeitspanvolumen
- // hochdynamisches GTC-Fräsen in zähen rostfreien Stählen, Sonderlegierungen sowie verschiedensten Stahl- und Gusssorten

IHRE VORTEILE IM ÜBERBLICK

- // Hochleistungsschruppen auch bei hohen Schnitttiefen
- // hohe Laufruhe und große Zeitspanvolumen
- // universelles GTC-Fräsen in verschiedensten Stahl- und Gusssorten, rostfreien Stählen sowie Sonderlegierungen

RF 100 SPEED P & RF 100 SPEED M (4-SCHNEIDER)

GTC-Bearbeitung bei einem ae von bis zu 15 %

Dank hohem Spiralwinkel und großen Spannuten sorgen der RF 100 Speed P und der RF 100 Speed M für eine geringe Maschinenbelastung und Leistungsaufnahme. Die geringere Zähnezahl bietet maximalen Spanraum für eine gute Spanabfuhr.

RF 100 Speed P, Seite 6

mit 3°-Spanwinkel für Materialien wie höherfeste Stähle bis 1600 N/mm² oder 48 HRC sowie alle Gusssorten geeignet

RF 100 Speed M, Seite 8

mit 9°-Spanwinkel der Spezialist für weichzähe Stähle bis 850 N/mm², hochlegierte und rostfreie Stähle sowie Sonderlegierungen

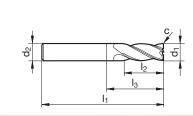
RF 100 5 SPEED & RF 100 7 SPEED

Hochdynamische GTC-Bearbeitungen bei einem a_{e} von bis zu 10 %

Bei begrenzter Maschinendrehzahl oder durch den Werkstoff limitierte Schnittgeschwindigkeiten stellen der RF 100 5 und 7 Speed durch erhöhte Zähneanzahl hohe Vorschübe und lange Standzeiten sicher. Sie sind besonders geeignet für schwerzerspanbare Werkstoffe unter stabilen Bedingungen.

RF 100 5 Speed, Seite 10

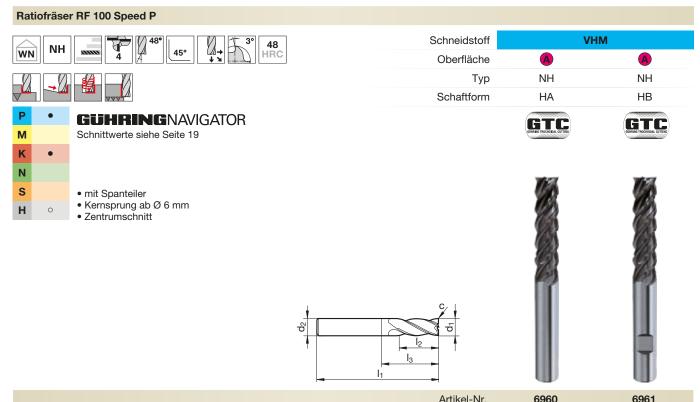
Einsetzbar in allen zähen Werkstoffen bis 1200 N/mm². Rampen bis 10°, Nuten mit Schnitttiefen bis 1 x D, Helixfräsen.



RF 100 7 Speed, Seite 13

Einsetzbar in allen zähen Werkstoffen bis $1200\,\mathrm{N/mm^2}$. Helixfräsen bis $0.05\,\mathrm{x}$ D $\mathrm{a_p}$ Zustellung pro Umlauf.

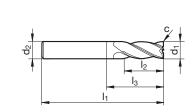
Ratiofräser RF 100 Speed P VHM Schneidstoff WN NH A Oberfläche NH NH Тур ΗВ Schaftform НА Р **GUHRING**NAVIGATOR GTC GTC M Schnittwerte siehe Seite 19 Κ N mit Spanteiler Nuten bis max. 0,8xD tief Kernsprung ab Ø 6 mm Zentrumschnitt S Н



						Artikel-Nr.	6958	6959
d1 h10	d2 h6	l1	12	13	С	Z	Code	Niu
mm	mm	mm	mm	mm	mm x 45°		Code	-INF.
6,00	6,00	57	15,0	21,0	0,12	4	6,00	00
8,00	8,00	63	20,0	27,0	0,16	4	8,00	00
10,00	10,00	72	24,0	32,0	0,20	4	10,0	00
12,00	12,00	83	28,0	38,0	0,24	4	12,0	00
16,00	16,00	92	36,0	44,0	0,32	4	16,0	00
20,00	20,00	104	45,0	54,0	0,40	4	20,0	00
25,00	25,00	121	55,0	65,0	0,50	4	25,0	00

					fz	(mm/z)/	Ø						f_z	(mm/z)/	Ø		
			3	6	8	10	12	16	20		3	6	8	10	12	16	20
ISC) Härte	V _C	a _p :	=I2	HPC	HSC		a _e r = 0,1		V _C		a _p =l2				nax=0,0	2xD
В	≤850 N/mm ²	340	0,036	0,072	0,096	0,138	0,17	0,22	0,28	360	0,017	0,034	0,046	0,066	0,08	0,11	0,13
	≥850 N/mm ²	250	0,031	0,062	0,083	0,115	0,14	0,18	0,23	270	0,015	0,030	0,040	0,055	0,07	0,09	0,11
K	≤240 HB	300	0,038	0,076	0,101	0,150	0,18	0,24	0,30	320	0,018	0,036	0,048	0,072	0,09	0,11	0,14
	≥240 HB	260	0,035	0,069	0,092	0,127	0,15	0,20	0,25	280	0,017	0,033	0,044	0,061	0,07	0,10	0,12

						Artikei-ivr.	0900	0901
d1 h10	d2 h6	I1	12	13	С	Z	Code	Mu
mm	mm	mm	mm	mm	mm x 45°		Code	-INF.
6,00	6,00	65	24,0	29,0	0,12	4	6,00	00
8,00	8,00	75	32,0	39,0	0,16	4	8,00	00
10,00	10,00	90	40,0	50,0	0,20	4	10,0	00
12,00	12,00	100	46,0	55,0	0,24	4	12,0	00
16,00	16,00	108	55,0	60,0	0,32	4	16,0	00
20,00	20,00	126	65,0	76,0	0,40	4	20,0	00
25,00	25,00	150	85,0	94,0	0,50	4	25,0	00

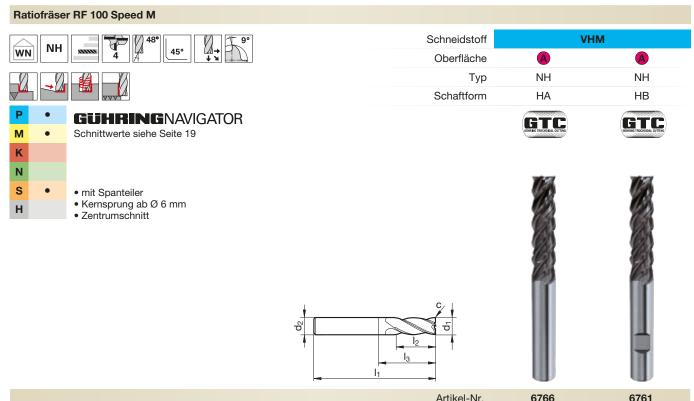

					f _z	(mm/z)/	Ø						f _z	(mm/z)/	Ø		
			3	6	8	10	12	16	20		3	6	8	10	12	16	20
ISO	Härte	V _C	a _p :	=I2	HPC	HSC		a _e r = 0,1		V _C		a _p =l2			a _e m	nax=0,0	2xD
В	≤850 N/mm ²	340	0,036	0,072	0,096	0,138	0,17	0,22	0,28	360	0,017	0,034	0,046	0,066	0,08	0,11	0,13
	≥850 N/mm ²	250	0,031	0,062	0,083	0,115	0,14	0,18	0,23	270	0,015	0,030	0,040	0,055	0,07	0,09	0,11
K	≤240 HB	300	0,038	0,076	0,101	0,150	0,18	0,24	0,30	320	0,018	0,036	0,048	0,072	0,09	0,11	0,14
- 1	≥240 HB	260	0,035	0,069	0,092	0,127	0,15	0,20	0,25	280	0,017	0,033	0,044	0,061	0,07	0,10	0,12

GUHRING 7

Kernsprung ab Ø 6 mm
Zentrumschnitt

Н

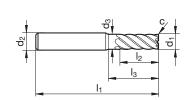
Ratiofräser RF 100 Speed M VHM Schneidstoff WN NH A A Oberfläche NH NH Тур ΗВ Schaftform НА Р **GÜHRING**NAVIGATOR GTC GTC M Schnittwerte siehe Seite 19 Κ N S • Nuten bis max. 0,8xD tief



						Artikel-Nr.	6765	6760
d1 h10	d2 h6	l1	12	13	С	Z	On do No	
mm	mm	mm	mm	mm	mm x 45°		Code-Nr.	
3,00	6,00	57	8,0	10,9	0,06	4	3,000	
4,00	6,00	57	11,0	13,9	0,08	4	4,000	
5,00	6,00	57	13,0	15,9	0,10	4	5,000	
6,00	6,00	57	15,0	21,0	0,12	4	6,000	
8,00	8,00	63	20,0	27,0	0,16	4	8,000	
10,00	10,00	72	24,0	32,0	0,20	4	10,000	
12,00	12,00	83	28,0	38,0	0,24	4	12,000	
16,00	16,00	92	36,0	44,0	0,32	4	16,000	
20,00	20,00	104	45,0	54,0	0,40	4	20,000	

						fz	(mm/z)/	Ø						fz	(mm/z)/	Ø		
				3	6	8	10	12	16	20		3	6	8	10	12	16	20
	SO	Härte	V _C	ap	=12	HPC	HSC		a _e r = 0,		V _C		a _p =l2			a _e m	nax=0,0	2xD
	P	≤850 N/mm ²	340	0,036	0,072	0,096	0,138	0,17	0,22	0,28	360	0,017	0,034	0,046	0,066	0,08	0,11	0,13
	Г.	≥850 N/mm ²	250	0,031	0,062	0,083	0,115	0,14	0,18	0,23	270	0,015	0,030	0,040	0,055	0,07	0,09	0,11
	М	≤750 N/mm ²	220	0,031	0,062	0,083	0,115	0,14	0,18	0,23	240	0,015	0,030	0,040	0,055	0,07	0,09	0,11
	IVI	≥750 N/mm ²	110	0,024	0,048	0,064	0,092	0,11	0,15	0,18	120	0,011	0,021	0,028	0,040	0,05	0,06	0,08
	S	Ni-Basis	60	0,019	0,039	0,052	0,074	0,09	0,12	0,15	60	0,008	0,017	0,022	0,032	0,04	0,05	0,06
	3	Ti-Basis	110	0,028	0,055	0,074	0,104	0,12	0,17	0,21	120	0,013	0,026	0,035	0,050	0,06	0,08	0,10

Gühring



						Artikei-ivr.	0700	0/01
d1 h10	d2 h6	I1	12	13	С	Z	Code	Niu
mm	mm	mm	mm	mm	mm x 45°		Code	·INF.
3,00	6,00	57	12,0	14,9	0,06	4	3,00	0
4,00	6,00	65	16,0	18,9	0,08	4	4,00	0
5,00	6,00	65	20,0	22,9	0,10	4	5,00	0
6,00	6,00	65	24,0	29,0	0,12	4	6,00	0
8,00	8,00	75	32,0	39,0	0,16	4	8,00	0
10,00	10,00	90	40,0	50,0	0,20	4	10,00	00
12,00	12,00	100	46,0	55,0	0,24	4	12,00	00
16,00	16,00	108	55,0	60,0	0,32	4	16,00	00
20,00	20,00	126	65,0	76,0	0,40	4	20,00	00

					f _z	(mm/z)/	Ø						f _z	(mm/z)/	Ø		
			3	6	8	10	12	16	20		3	6	8	10	12	16	20
ISO	Härte	V _C	a _p :	=I2	HPC	HSC			nax 10xD	V _C		a _p =l2			a _e m	nax=0,0	2xD
P	≤850 N/mm ²	340	0,036	0,072	0,096	0,138	0,17	0,22	0,28	360	0,017	0,034	0,046	0,066	0,08	0,11	0,13
	≥850 N/mm ²	250	0,031	0,062	0,083	0,115	0,14	0,18	0,23	270	0,015	0,030	0,040	0,055	0,07	0,09	0,11
М	≤750 N/mm ²	220	0,031	0,062	0,083	0,115	0,14	0,18	0,23	240	0,015	0,030	0,040	0,055	0,07	0,09	0,11
IVI	≥750 N/mm ²	110	0,024	0,048	0,064	0,092	0,11	0,15	0,18	120	0,011	0,021	0,028	0,040	0,05	0,06	0,08
S	Ni-Basis	60	0,019	0,039	0,052	0,074	0,09	0,12	0,15	60	0,008	0,017	0,022	0,032	0,04	0,05	0,06
3	Ti-Basis	110	0,028	0,055	0,074	0,104	0,12	0,17	0,21	120	0,013	0,026	0,035	0,050	0,06	0,08	0,10

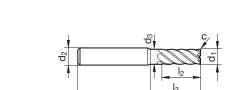
Ratiofräser RF 100 5 Speed VHM Schneidstoff DIN 6527L N Oberfläche Тур Ν Ν Schaftform HA ΗВ **GÜHRING**NAVIGATOR GTC GIRRIG TROCHODAL CUTTING GTC M Schnittwerte siehe Seite 19 K N S mit SpanteilerHalsfreischliffohne Zentrumschnitt Н

							Artikel-Nr.	6856	6857
d1 h10	d2 h6	d3	I1	12	13	С	Z	Code-	Ma
mm	mm	mm	mm	mm	mm	mm x 45°		Code-	Nr.
6,00	6,00	5,70	57	13,0	20,0	0,12	5	6,000)
8,00	8,00	7,70	63	19,0	26,0	0,16	5	8,000)
10,00	10,00	9,50	72	22,0	30,0	0,20	5	10,00	0
12,00	12,00	11,50	83	26,0	36,0	0,24	5	12,00	0
16,00	16,00	15,50	92	32,0	42,0	0,32	5	16,00	0
20,00	20,00	19,50	104	38,0	52,0	0,40	5	20,00	0

					f _z	(mm/z)/	Ø						f _z	(mm/z)/	Ø		
			3	6	8	10	12	16	20		3	6	8	10	12	16	20
ISO	Härte	Vc	a _p :	=I2	HPC	HSC		a _e r = 0,		Vc		a _p =l2			a _e m	nax=0,0	2xD
P	≤850 N/mm ²	340	0,036	0,072	0,096	0,138	0,17	0,22	0,28	360	0,017	0,034	0,046	0,066	0,08	0,11	0,13
-	≥850 N/mm ²	250	0,031	0,062	0,083	0,115	0,14	0,18	0,23	270	0,015	0,030	0,040	0,055	0,07	0,09	0,11
М	≤750 N/mm ²	220	0,031	0,062	0,083	0,115	0,14	0,18	0,23	240	0,015	0,030	0,040	0,055	0,07	0,09	0,11
IVI	≥750 N/mm ²	110	0,024	0,048	0,064	0,092	0,11	0,15	0,18	120	0,011	0,021	0,028	0,040	0,05	0,06	0,08
S	Ni-Basis	60	0,019	0,039	0,052	0,074	0,09	0,12	0,15	60	0,008	0,017	0,022	0,032	0,04	0,05	0,06
3	Ti-Basis	110	0,028	0,055	0,074	0,104	0,12	0,17	0,21	120	0,013	0,026	0,035	0,050	0,06	0,08	0,10

Ν

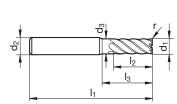
GTC



Ratiofräser RF 100 5 Speed

GUHRINGNAVIGATOR M Schnittwerte siehe Seite 19

K N S mit SpanteilerHalsfreischliffohne Zentrumschnitt н



GTC

							Artikel-Nr.	6858	6859
d1 h10	d2 h6	d3	l1	12	13	С	Z	Cod	e-Nr.
mm	mm	mm	mm	mm	mm	mm x 45°		Cod	e-nr.
6,00	6,00	5,70	65	20,0	28,0	0,12	5	6,0	000
8,00	8,00	7,70	75	26,0	38,0	0,16	5	8,	000
10,00	10,00	9,50	80	32,0	38,0	0,20	5	10	,000
12,00	12,00	11,50	93	40,0	46,0	0,24	5	12,	,000
16,00	16,00	15,50	108	50,0	58,0	0,32	5	16	,000
20,00	20,00	19,50	126	62,0	74,0	0,40	5	20,	,000

Γ						f _z	(mm/z)/	Ø						f _z	(mm/z)/	Ø		
				3	6	8	10	12	16	20		3	6	8	10	12	16	20
	ISO	Härte	Vc	a _p :	=I2	HPC	HSC		_	nax I0xD	Vc		a _p =l2			a _e m	nax=0,0	2xD
	P	≤850 N/mm ²	340	0,036	0,072	0,096	0,138	0,17	0,22	0,28	360	0,017	0,034	0,046	0,066	0,08	0,11	0,13
		≥850 N/mm ²	250	0,031	0,062	0,083	0,115	0,14	0,18	0,23	270	0,015	0,030	0,040	0,055	0,07	0,09	0,11
	М	≤750 N/mm ²	220	0,031	0,062	0,083	0,115	0,14	0,18	0,23	240	0,015	0,030	0,040	0,055	0,07	0,09	0,11
	IVI	≥750 N/mm ²	110	0,024	0,048	0,064	0,092	0,11	0,15	0,18	120	0,011	0,021	0,028	0,040	0,05	0,06	0,08
	s	Ni-Basis	60	0,019	0,039	0,052	0,074	0,09	0,12	0,15	60	0,008	0,017	0,022	0,032	0,04	0,05	0,06
	3	Ti-Basis	110	0,028	0,055	0,074	0,104	0,12	0,17	0,21	120	0,013	0,026	0,035	0,050	0,06	0,08	0,10

Ratiofräser RF 100 5 Speed Schneidstoff WN Oberfläche Ν Тур Schaftform HA **GUHRING**NAVIGATOR GTC M Schnittwerte siehe Seite 19 K N S • mit Spanteiler Halsfreischliffohne Zentrumschnitt Н

Artikel-Nr.

6860

Ν

ΗВ

GTC

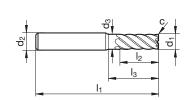
6861
6861

VHM

		d3	I1	12	13	r	Z	Code-Nr.
mm	mm	mm	mm	mm	mm	mm		Code-Nr.
6,00	6,00	5,70	65	20,0	28,0	0,2	5	6,002
6,00	6,00	5,70	65	20,0	28,0	0,5	5	6,005
6,00	6,00	5,70	65	20,0	28,0	1,0	5	6,010
8,00	8,00	7,70	75	26,0	38,0	0,3	5	8,003
8,00	8,00	7,70	75	26,0	38,0	0,5	5	8,005
8,00	8,00	7,70	75	26,0	38,0	1,0	5	8,010
8,00	8,00	7,70	75	26,0	38,0	1,5	5	8,015
10,00	10,00	9,50	80	32,0	38,0	0,5	5	10,005
10,00	10,00	9,50	80	32,0	38,0	1,0	5	10,010
10,00	10,00	9,50	80	32,0	38,0	1,5	5	10,015
10,00	10,00	9,50	80	32,0	38,0	2,0	5	10,020
12,00	12,00	11,50	93	40,0	46,0	0,5	5	12,005
12,00	12,00	11,50	93	40,0	46,0	1,0	5	12,010
12,00	12,00	11,50	93	40,0	46,0	1,5	5	12,015
12,00	12,00	11,50	93	40,0	46,0	2,0	5	12,020
16,00	16,00	15,50	108	50,0	58,0	0,5	5	16,005
16,00	16,00	15,50	108	50,0	58,0	1,0	5	16,010
16,00	16,00	15,50	108	50,0	58,0	1,5	5	16,015
16,00	16,00	15,50	108	50,0	58,0	2,0	5	16,020
16,00	16,00	15,50	108	50,0	58,0	3,0	5	16,030
20,00	20,00	19,50	126	62,0	74,0	1,0	5	20,010
20,00	20,00	19,50	126	62,0	74,0	1,5	5	20,015
20,00	20,00	19,50	126	62,0	74,0	2,0	5	20,020
20,00	20,00	19,50	126	62,0	74,0	3,0	5	20,030

				f _z (mm/z)/Ø							$f_z (mm/z)/\varnothing$							
ISO Härte			3	6	8	10	12	16	20		3	6	8	10	12	16	20	
	V _C	a _p :	=I2	HPC	HSC		a _e r = 0,	nax I0xD	V _C		a _p =l2		a _e max = 0,02xD			2xD		
D	≤850 N/mm ²	340	0,036	0,072	0,096	0,138	0,17	0,22	0,28	360	0,017	0,034	0,046	0,066	0,08	0,11	0,13	
	≥850 N/mm ²	250	0,031	0,062	0,083	0,115	0,14	0,18	0,23	270	0,015	0,030	0,040	0,055	0,07	0,09	0,11	
М	≤750 N/mm ²	220	0,031	0,062	0,083	0,115	0,14	0,18	0,23	240	0,015	0,030	0,040	0,055	0,07	0,09	0,11	
IVI	≥750 N/mm ²	110	0,024	0,048	0,064	0,092	0,11	0,15	0,18	120	0,011	0,021	0,028	0,040	0,05	0,06	0,08	
S	Ni-Basis	60	0,019	0,039	0,052	0,074	0,09	0,12	0,15	60	0,008	0,017	0,022	0,032	0,04	0,05	0,06	
3	Ti-Basis	110	0,028	0,055	0,074	0,104	0,12	0,17	0,21	120	0,013	0,026	0,035	0,050	0,06	0,08	0,10	

Ratiofräser RF 100 7 Speed



GUHRINGNAVIGATOR M Schnittwerte siehe Seite 19

K N S

Н

GTC

GTC

							Artikel-Nr.	6864	6865
d1 h10	d2 h6	d3	I1	12	13	С	Z	Cod	a Nu
mm	mm	mm	mm	mm	mm	mm x 45°		Code	e-Nr.
6,00	6,00	5,70	65	20,0	28,0	0,12	7	6,0	000
8,00	8,00	7,70	75	26,0	38,0	0,16	7	8,0	000
10,00	10,00	9,50	80	32,0	38,0	0,20	7	10,	000
12,00	12,00	11,50	93	40,0	46,0	0,24	7	12,	000
16,00	16,00	15,50	108	50,0	58,0	0,32	7	16,	000
20.00	20.00	19.50	126	62.0	74 0	0.40	7	20	000

				f _z (mm/z)/Ø							f _z (mm/z)/Ø							
ISO Härte			3	6	8	10	12	16	20		3	6	8	10	12	16	20	
	Vc	a _p :	=I2	HPC	HSC		_	max 10xD	Vc		a _p =l2		a _e max=0,02xD			2xD		
D	≤850 N/mm ²	340	0,036	0,072	0,096	0,138	0,17	0,22	0,28	360	0,017	0,034	0,046	0,066	0,08	0,11	0,13	
-	≥850 N/mm ²	250	0,031	0,062	0,083	0,115	0,14	0,18	0,23	270	0,015	0,030	0,040	0,055	0,07	0,09	0,11	
М	≤750 N/mm ²	220	0,031	0,062	0,083	0,115	0,14	0,18	0,23	240	0,015	0,030	0,040	0,055	0,07	0,09	0,11	
IVI	≥750 N/mm ²	110	0,024	0,048	0,064	0,092	0,11	0,15	0,18	120	0,011	0,021	0,028	0,040	0,05	0,06	0,08	
	Ni-Basis	60	0,019	0,039	0,052	0,074	0,09	0,12	0,15	60	0,008	0,017	0,022	0,032	0,04	0,05	0,06	
S	Ti-Basis	110	0,028	0,055	0,074	0,104	0,12	0,17	0,21	120	0,013	0,026	0,035	0,050	0,06	0,08	0,10	

Effizient fräsen mit den richtigen Strategien

GTC-Frässtrategien

Diese Frässtrategien gehören zu den modernsten und effektivsten Einsatzmethoden für die heutigen VHM-Fräswerkzeuge. Im Einsatz sorgen enorm hohe Zeitspanvolumen für eine deutliche Steigerung der Produktivität. Selbst bei schwächeren Maschinen oder instabilen Bearbeitungsbedingungen lassen sich sehr hohe Schnittparameter erreichen. Bei schwer zu zerspanenden Werkstoffen oder ungünstigen Durchmesser-Längen-Verhältnissen der Werkzeuge lässt sich eine massive Steigerung der Prozesssicherheit erzielen.

HIGH PERFORMANCE CUTTING

max. Zerspanvolumen/Zeit → stabile Verhältnisse; kurze Ausspannung; hohe Leistung; gute Kühlung

HIGH SPEED CUTTING

bei hoher Drehzahl/hohem Vorschub → hohe Dynamik; geringe Leistung; geringe Zustellung

Grundlagen & Ziele

Maximale Werkzeugnutzung

- Nutzung der gesamten Schneidenlänge
- volle Leistungsentfaltung
- erhöhte Werkzeugstandzeiten
- gleichmäßiger Verschleiß

Veränderung der Schnittaufteilung

- geringe Schnittbreiten ae
- hohe Schnitttiefen ap

Hohe Prozesssicherheit

- geringe Werkzeugumschlingung
- verbesserte Thermik an der Werkzeugschneide
- geringere mechanische Belastung

Maximale Zeitspanvolumen

• Einsparung von Zeit/Maschinenkosten

Grundlagen für wirtschaftliches Fräsen

Anforderung an die Peripherie

In jeder Materialgruppe einsetzbar

- P/ (K) (H) (M) (S) (N)
- leicht zerspanbare Werkstoffe = Erhöhung der Produktivität
- schwer zerspanbare Werkstoffe = Erhöhung der Prozesssicherheit

Hochdynamische Bearbeitungszentren

- kurze Beschleunigungswege
- hohes Drehzahlfeld
- kleine bis mittlere Werkzeugdurchmesser

Schwere Maschinen

- stabile Vorschubachsen
- hohes Spindeldrehmoment
- mittlere bis große Werkzeugdurchmesser

Labile bis stabile Werkstückspannung

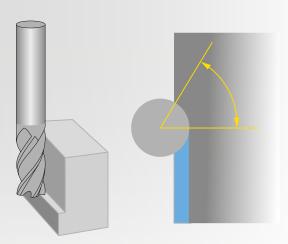
- stabil = vibrationsfreie Bearbeitung = maximales Zerspanvolumen
- labil = Reduzierung der Radialkräfte = erhöhte Prozesssicherheit

Einsatzparameter

Geringe Schnittbreite ae bis 0,33 x D

- geringe Umschlingungswinkel <70°
- geringe Kontaktzeit von Schneide zu Bauteil

Sehr hohe Zahnvorschübe fz


ullet reduzierte Spandicke lässt einen deutlich höheren f_z zu

Sehr hohe Schnittgeschwindigkeit vc

 reduziertes Aufheizen und verlängertes Abkühlen lassen sehr hohe v_c Werte zu

Große Schnitttiefe ap

- · verbesserte Hebelwirkung
- hohes Zeitspanvolumen
- Erhöhung der Kontaktpunkte von Werkzeug zu Bauteil

Werkzeugumschlingungswinkel & Werkzeugkontaktzeit

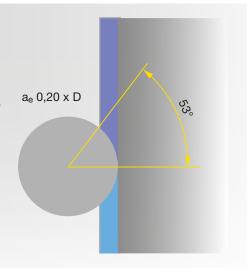
Zeitspanvolumen

Das Zeitspanvolumen gibt an wie hoch der tatsächliche Spanabtrag pro Minute ist. Es eignet sich besonders gut, um unterschiedliche Bearbeitungsstrategien miteinander zu vergleichen.

$$a_p$$
 (mm) $x a_e$ (mm) $x v_f$ (m/min) = Q (cm³/min)

Prozesseinfluss durch Werkzeugeingriff

Umschlingungswinkel


Als Umschlingungswinkel wird der Schnittbereich des Werkzeugs von Beginn der Spanbildung bis Austritt aus dem Material bezeichnet. Anhand dieses Parameters lässt sich die Belastung, die auf das Werkzeug wirkt, beurteilen. Der Winkel ist bei geraden Fräsbahnen konstant, bei konkaven Fräsbahnen nimmt er zu und bei konvexen Fräsbahnen nimmt er ab.

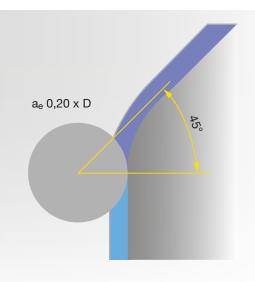
- konstanter Umschlingungswinkel
- konstante Werkzeugbelastung

Beispiel: $a_e 0,20 \times D = 53^{\circ} Umschlingung$

Umschlingung bleibt bei 53° konstant

Umschlingungswinkel bei konvexen Konturradien

Konvexe Fräsbahn


- abnehmender Umschlingungswinkel
- sinkende Werkzeugbelastung

Beispiel: $a_e 0,20 \times D = 53^{\circ} Umschlingung$

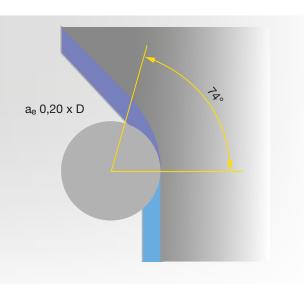
Umschlingung sinkt auf bis zu 45°

Maßnahmen: ae darf höher sein

fz kann erhöht werden

Umschlingungswinkel bei konkaven Konturradien

Konkave Fräsbahn


- zunehmender Umschlingungswinkel
- steigende Werkzeugbelastung

Beispiel: $a_e 0,20 \times D = 53^{\circ} Umschlingung$

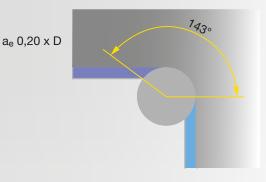
Umschlingung steigt auf bis zu 74°

Maßnahmen: ae muss reduziert werden

f_z muss im Radius reduziert werden

Prozesseinfluss durch Werkzeugeingriff

Umschlingungswinkel bei 90° Eckradien


Werkzeugradius = Eckenradius

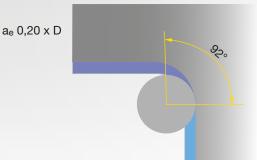
- sehr ungünstig für die Maschinendynamik
- Änderung der Belastungsrichtung
- abrupter Anstieg der Werkzeugbelastung

Beispiel: Erhöhung des Umschlingungswinkel

von 53° auf 143° (270%)

Maßnahme: v_c und f_z müssen stark reduziert werden

Werkzeugradius < Eckenradius

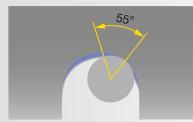

- Maschine kann die Bahn interpolieren
- kein "Schlag" auf das Werkzeug
- geringerer Anstieg der Werkzeugbelastung

Beispiel: Erhöhung des Umschlingungswinkel

von 53° auf 92° (174%)

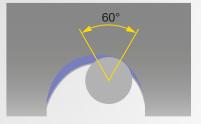
Maßnahmen: ae muss reduziert werden

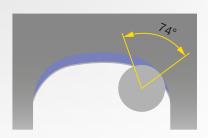
fz muss im Radius stark reduziert werden



Verhältnis Nutbreite zu Werkzeugdurchmesser beim Trochoidalfräsen

Nutbreite 1,7 - 2,0 x D


- Schnitt im C-Bogen
- a_e max. 0,10 x D (theor. 37°)
- Anstieg der Umschlingungswinkel um bis zu 50%


Nutbreite 2,1 - 3,0 x D

- Schnitt im C-Bogen
- a_e max. 0,15 x D (theor. 46°)
- Anstieg der Umschlingungswinkel um bis zu 30%

Nutbreite ab 3,1 x D

- Schnitt im D-Bogen
- ae max. 0,20 x D (theor. 53°)
- Anstieg der Umschlingungswinkel um bis zu 40%

Richtwerte zur Erhöhung der Schneitwerte bei Schneidenlängen bis 3 x D GTC HPC Schruppen und 🗚 Schlichten radiale Zustellung **Umschlinguns**v_c Faktor* Werkstoff **Anwendung** fz Faktor* in % des Ø winkel 100% 180° Nuten 1 1 HPC Schruppen 33 % 1,3 70° 1,5 **HPC** Schruppen 25% 1,5 60° 1,6 53° HPC Schruppen 20% 1,7 1,6 **HPC Schruppen** 15% 1,8 1,9 **HSC Schruppen** 10% 1,9 2,3 37° M 31° 8% 2,0 2,5 HSC Schruppen 26° **HSC Schruppen** 5% 2,1 2,5 HSC Schlichten 3% 2,0 1,2 20° **HSC Schlichten** 2% 2,0 1,1 18° Р **HSC Schlichten** 1% 11° 2,0 1,0 HSC Feinschlichten 0,5% 2,2 0,9

^{*}Basiswert für die Berechnung mit den v_c und f_z Faktoren ist der im Gühring-Navigator angegebene Wert für "Nuten" in der entsprechenden Materialgruppe.

Basisschnittwerte Nuten - RF 100-Werkzeuge - glattschneidig

Werkstoff	Härte	Anwendung	V _C					f _z bei N	lenn-Ø				
VVEIKSIOII	Tiaite	Anwendung		3	4	5	6	8	10	12	16	20	25
P1	≤ 850 N/mm ²	Nuten	180	0,015	0,020	0,025	0,030	0,040	0,060	0,072	0,096	0,120	0,150
P2	850-1200 N/mm ²	Nuten	160	0,014	0,019	0,024	0,029	0,038	0,055	0,066	0,088	0,110	0,138
P3	850-1400 N/mm ²	Nuten	135	0,014	0,018	0,023	0,027	0,036	0,050	0,060	0,080	0,100	0,125
M1	< 750 N/mm ²	Nuten	120	0,014	0,018	0,023	0,027	0,036	0,050	0,060	0,080	0,100	0,125
M2	750-850 N/mm ²	Nuten	80	0,012	0,016	0,020	0,024	0,032	0,045	0,054	0,072	0,090	0,113
M3	> 850 N/mm ²	Nuten	70	0,011	0,014	0,018	0,021	0,028	0,040	0,048	0,064	0,080	0,100
S-Ni	≤ 1300 N/mm ²	Nuten	30	0,008	0,011	0,014	0,017	0,022	0,032	0,038	0,051	0,064	0,080
S-Ti	≤ 1300 N/mm ²	Nuten	60	0,012	0,016	0,020	0,024	0,032	0,045	0,054	0,072	0,090	0,113
K1	≤ 240 HB	Nuten	160	0,017	0,022	0,028	0,033	0,044	0,065	0,078	0,104	0,130	0,163
K2	> 240 HB	Nuten	140	0,015	0,020	0,025	0,030	0,040	0,055	0,066	0,088	0,110	0,138
Alu-Knetleg.	≤ 5 % Si	Nuten	500	0,020	0,026	0,033	0,039	0,052	0,075	0,090	0,120	0,150	0,188
Alu-Gussleg.	> 5 % Si	Nuten	230	0,017	0,022	0,028	0,033	0,044	0,060	0,072	0,096	0,120	0,150
NE-Metalle	≤ 850 N/mm ²	Nuten	250	0,017	0,022	0,028	0,033	0,044	0,060	0,072	0,096	0,120	0,150

Beispiel	HPC-Schruppen: 15 % a _e ; 2 x Da _p ; C45
Werkzeug	RF 100 U Ø12 mm - 4 Schneiden
Zustellung	radiale Zustellung a _e 1,8 mm = 15 % von D
Basiswert Nuten	v _c Nuten = 180 m/min, f _z Nuten = 0,072 mm
Umrechnung	v_c Faktor = 1,8 \rightarrow v_c : 180 m/min x 1,8 = v_c 324 m/min f_z Faktor = 1,9 \rightarrow f_z : 0,072 mm x 1,9 = f_z 0,137 mm
Erhöhte Werte	v _c : 324 m/min / f _z : 0,137 mm n: 8594 U/min / v _f : 4710 mm/min
Zeitspanvolumen:	Q = 203 cm ³ /min

sehr schwer

L2

0,01 x D

SCHRUPPEN

SCHRUPPEN

SCHLICHTEN

0,016 | 0,022 | 0,027 | 0,032 | 0,043 | 0,054 | 0,065 | 0,086 | 0,108

Fräs-	Werk-	Zerspanbarkeit	max. a _p	max. a _e	max. Ein-	Vc				fz (mm	/z) bei N						
bedingungen	stoff		an	ax. ae	griffswinkel		3	4	5	6	8	10	12	16	20		
	Р	leicht / mittel	L2	0,15 x D	46°	280	0,026	0,034	0,043	0,051	0,084	0,105	0,125	0,167	0,209		
		schwer	L2	0,15 x D	46°	220	0,026	0,034	0,043	0,051	0,076	0,095	0,114	0,152	0,190		
HPC	М	leicht /mittel	L2	0,10 x D	37°	160	0,024	0,032	0,040	0,048	0,064	0,081	0,097	0,129	0,161		
	IVI	schwer	L2	0,10 x D	37°	100	0,024	0,032	0,040	0,048	0,064	0,081	0,097	0,129	0,161		
	S	mittel / schwer	L2	0,08 x D	31°	90	0,026	0,035	0,044	0,053	0,070	0,088	0,105	0,140	0,175		
'	3	sehr schwer	L2	0,08 x D	31°	60	0,023	0,030	0,038	0,045	0,060	0,075	0,090	0,120	0,150		
	T						fz (mm/z) bei Nenn-Ø										
Fräs- bedingungen	Werk- stoff	Zerspanbarkeit	max. a _p	max. a _e	max. Ein- griffswinkel	Vc	3	4	5	6	8	10	12	16	20		
I	2.0	leicht / mittel	L2	0.10 x D	37°	310	0,031	0,041	0,052	0,062	0,101	0,127			0,253		
:	Р			-, -			-					<u> </u>	0,152	0,202			
		schwer	L2	0,10 x D	37°	240	0,031	0,041	0,052	0,062	0,092	0,115	0,138	0,184	0,230		
HSC	M	leicht /mittel	L2	0,08 x D	31°	170	0,026	0,035	0,044	0,053	0,070	0,088	0,105	0,140	0,175		
		schwer	L2	0,08 x D	31°	110	0,026	0,035	0,044	0,053	0,070	0,088	0,105	0,140	0,175		
	s	mittel / schwer	L2	0,05 x D	26°	100	0,026	0,035	0,044	0,053	0,070	0,088	0,105	0,140	0,175		
	3	sehr schwer	L2	0,05 x D	26°	70	0,023	0,030	0,038	0,045	0,060	0,075	0,090	0,120	0,150		
Fräs-	Werk-									fz (mm	/z) bei N	Jenn-Ø					
bedingungen	stoff	Zerspanbarkeit	max. a _p	max. a _e	max. Ein- griffswinkel	Vc	3	4	5	6	8	10	12	16	20		
!		leicht / mittel	L2	0.01 x D	11°	340	0,024	0,032	0.041	0.049	0.079	0,099	0,119	0,158	0,198		
	Р	schwer	L2	0.01 x D	11°	270	0,024	0,032	0,041	0,049	0,072	0,090	0,108	0,144	0,180		
		leicht /mittel	L2	0.01 x D	11°	180	0,019	0,025	0,032	0,038	0,050	0,063	0,076	0,101	0,126		
HSC	M	schwer	L2	0.01 x D	11°	120	0,019	0.025	0,032	0.038	0,050	0.063	0.076	0,101	0,126		
5		mittel / schwer	L2	0.01 x D	11°	100	0,019	0.025	0,032	0.038	0.050	0.063	0.076	0,101	0.126		
	S	THILLET / SCHWEI	LZ	0,01 x D	- 11	100	0,019	0,020	0,002	0,000	0,000	0,000	0,070	0,101	0,120		

GUHRING 19

70

11°

Postfach 100247 • 72423 Albstadt Herderstraße 50-54 • 72458 Albstadt

T +49 74 31 17-0 F +49 74 31 17-21 279

info@guehring.de www.guehring.com

Eventuelle Druckfehler oder zwischenzeitlich eingetretene Änderungen berechtigen nicht zu Ansprüchen. Wir liefern ausschließlich zu unseren Liefer- und Zahlungsbedingungen. Diese können Sie bei uns anfordern.