

Kundenspezifische Werkzeuge

H HOLLFELDER-GÜHRING CUTTING TOOLS

Ihr kompetenter Partner im Bereich der Metallzerspanung

An unseren beiden Fertigungsstandorten in Nürnberg und Zorbau konstruieren und fertigen wir auf modernsten CNC- / Dreh- / Fräs- / Schleif- und Erodiermaschinen Präzisionswerkzeuge für höchste Ansprüche.

Alle Tätigkeiten im Unternehmen basieren auf der Grundlage unserer Unternehmens-, Qualitäts- und Umweltpolitik und verfolgen das Ziel, durch unsere Produkte und Produktinnovationen unter Einhaltung gesetzlicher und behördlicher Vorgaben zu einer permanenten Produktivitätssteigerung bei unseren Kunden beizutragen.

Weiterhin wollen wir durch einen hohen Qualitätsstandard und eine angemessene Umweltpolitik bei der Herstellung unserer Produkte und Dienstleistungen eine führende Position in unserer Branche erreichen und diese Position kontinuierlich ausbauen.

Alle Prozesse im Unternehmen orientieren sich schwerpunktmäßig an den Anforderungen unserer Kunden und werden durch das Managementteam ständig überwacht und durch kontinuierliche Verbesserungsprozesse (KVP) an die sich ändernden Rahmenbedingungen angepasst. Zur Erreichung unserer Ziele unterhalten wir ein zertifiziertes Qualitäts- und Umweltmanagementsystem nach den Forderungen der DIN EN ISO 9001: 2008 und DIN EN ISO 14001: 2004.

Das perfekte Zusammenspiel von hochqualifizierten Mitarbeitern und modernsten Fertigungsmethoden bildet dabei die Basis für ausgereifte Produkte auf einem hohen Qualitätsniveau.

Das einfache Handling und die Einstellbarkeit unserer Werkzeuge sind die Grundlage für Einsparungen im Bereich der Werkzeugvoreinstellung sowie bei der Erzielung enger Fertigungstoleranzen.

Unser Standardprogramm ist die Basis für eine Vielzahl von innovativen Sonderlösungen, welche bei unseren Kunden weltweit eingesetzt und geschätzt werden. Häufig sind es gerade die kundenspezifischen Lösungen, welche die Potenziale unserer Werkzeugsysteme erst voll erschließen und so zu Einsparungen und Produktivitätssteigerungen beitragen.

Bei der Auswahl des für Sie richtigen Werkzeugkonzeptes beraten wir Sie gerne und stehen Ihnen von der Planung bis zum effizienten Einsatz als kompetenter Partner zur Seite.

Fordern Sie uns, wir lösen auch Ihre Aufgabe.

präzise | flexibel | innovativ

Ihr Vertrauen wissen wir dabei stets zu schätzen.

Ein zuverlässiger Partner

HOLLFELDER-GÜHRING CUTTING TOOLS

hat sich weltweit eine führende Position als zuverlässiger Partner der metallverarbeitenden Industrie erarbeitet. Innovative Werkzeuglösungen, sowohl im Standard- als auch im Bereich von kundenspezifischen Werkzeugen, bilden die Grundlage für eine kostenoptimierte Fertigung.

Die Kompetenz

Individuelle Werkzeugkonzepte für komplexe Zerspanungsprobleme, ausgehend vom jeweiligen Bearbeitungsfall, gehören zum Selbstverständnis unserer Ingenieure und Techniker. Mit hoher fachlicher Kompetenz, innovativem Denken und Handeln sowie auf der Grundlage gesammelter Erfahrungen konstruieren und fertigen wir im engen Dialog mit unseren Kunden Werkzeugsysteme von höchster Präzision für die µm-genaue Bearbeitung komplexer Konturen.

Die Wirtschaftlichkeit

HOLLFELDER-GÜHRING CUTTING TOOLS bietet wirtschaftliche Lösungen. Die einfache Einstellbarkeit unserer Werkzeuge reduziert unproduktive Nebenzeiten. Durch intelligent konstruierte Kombinationswerkzeuge, hohe effektive Zähnezahlen und die Auswahl des optimalen Schneidstoffes gelingt es uns die Bearbeitungszeiten entscheidend zu verringern. Ihre Vorteile sind ein Höchstmaß an Flexibilität, Produktivität und Prozesssicherheit.

Unser Service

Ausgehend von den bearbeitungstechnischen Anforderungen analysieren wir die Fertigungsprozesse und schlagen Werkzeuglösungen vor, welche anspruchsvollen Kundenwünschen gerecht werden. Mit den bewährten Werkzeugsystemen von HOLLFELDER-GÜHRING CUTTING TOOLS nutzen unsere Kunden dabei hochpräzise und zuverlässige Systeme, die sich seit Jahren weltweit einen ausgezeichneten Ruf erworben haben.

Unser Servicespektrum umfasst u.a.:

- Zerspanungsversuche im eigenen Haus
- Anwendungsschulungen auch bei Kunden vor Ort
- komplette CAD-Layouts nach Kundenvorgaben
- anwendungstechnische Unterstützung

Unser Ziel ...

ist es, die Leistungsfähigkeit unserer Präzisionswerkzeuge fortlaufend zu steigern und deren Einsatzmöglichkeiten zu erweitern. Unseren Kunden ermöglichen wir dadurch einen Vorsprung durch eine effizientere Fertigung bei hoher Prozesssicherheit.

Für weitere Informationen besuchen Sie uns im Internet www.hollfelder-guehring.de

H Inhalt

Einstellsysteme

Funktion der Einstellsysteme für unsere Werkzeuge

Kundenspezifische Werkzeuge für die Bearbeitung folgender Komponenten:

1 Zylinderkopf

Vor- und Fertigbearbeitung, Brennraumseite, Lagergasse, Passlager, Tassenstößelbohrung, Federauflage, Zündkerzenbohrung, Entlastungsbohrung, Saugkanal

Vorbearbeitung, Lagerbreite, Dichtflächen, Passlager, Ventilationsbohrung, Anschlussbohrung, Ausgleichswellenbohrung, Kurbelwellenlagerdeckel, Kurbelwellenbohrung, Zylinderlauffläche, Zylinderlaufbuchse, Honfreigang, Kurbelwellenlagergasse

△⊝ Getriebekomponenten

Schaltschiebergehäuse, Getriebegehäuse, Vorbearbeitung, Schulterbearbeitung, Anschlusszapfen, Lagersitze, Ventilplatte

56 **E-Motor**

Statorbohrung

6	\cap	Pumpen
()		i dilipeli

Ölpumpe, Einspritzpumpe, Edelstahlpumpe

74 Weitere Komponenten der Automobilindustrie

Startergehäuse, Nockenwelle, Kurbelwelle, Leiterrahmen, Schaltgabel, Achsträger, Lenkgehäuse, Antriebsflansch, AGW-Gehäuse, Bremssattel, Steuergehäuse, Getriebegehäuse, Ausgleichswelle, Motorrad Pleuel

Solution Komponenten des allgemeinen Maschinenbaus

Elektrowerkzeuge, Hydraulikindustrie, Windkraftindustrie, Endenbearbeitung, Verdichter- und Kompressorenbau

108 Turboladergehäuse

Vor- und Fertigbearbeitung, V-Band

118 Luftfahrttechnik

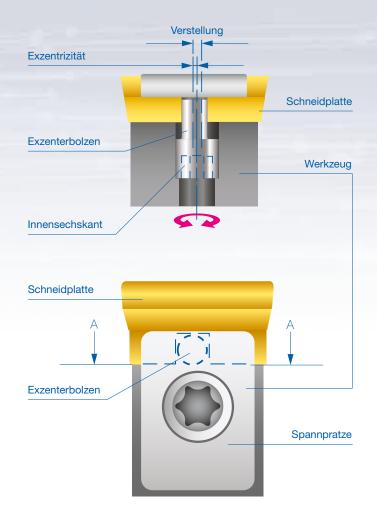
Brennstoffverteiler, Flugzeugkomponenten

122 **Drehbearbeitungen**

Nockenwellenversteller, Mantel, Profilwelle, Lagerschild, Welle

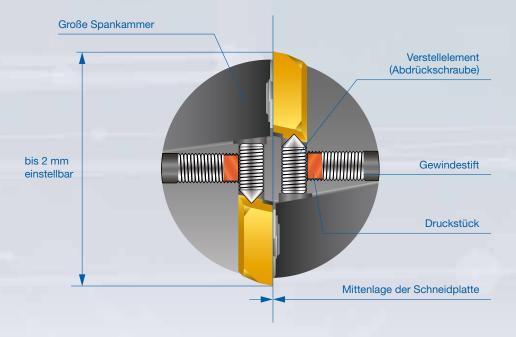
128 Anfrageformulare

H Einstellsysteme

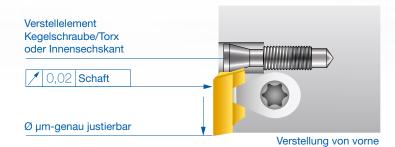

Exzenterbolzenverstellung

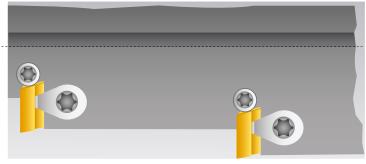
Die Einstellsysteme in den Werkzeugen bilden die Basis für höchst präzise Fertigungsergebnisse auf unterschiedlichsten Werkstoffen. Sie sind die Grundlage für stetig innovative Werkzeugkonstruktionen, welche bei unseren Kunden zu enormen Produktivitätssteigerungen beitragen. Das Handling ist einfach und zeitsparend.

- Exzenterbolzen zur µm-genauen Einstellung
- Viele Gestaltungsmöglichkeiten dank offener Bauform
- Aufbau des Spannsystems erfordert keinerlei seitliche Anlagen der Schneidkörper
- 3-seitige Bearbeitung möglich
- Verstellbewegung kann sowohl in positiver wie in negativer Richtung erfolgen


Einstellsysteme H

Radiale Abdrückschraube und Kegelschraubenverstellung

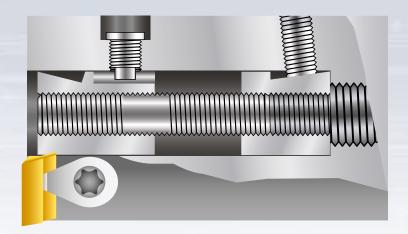

- Radiale Abdrückschraube zur µm-genauen Durchmessereinstellung
- Großer Verstellbereich → bis zu 2 mm im Durchmesser
- Einfaches Handling dank robuster Bauweise



- µm-genaue Durchmessereinstellung mittels Kegelschraube
- Verstellung sowohl von vorne als auch von oben möglich
- Flexibel kombinier- und einsetzbar

Verstellung von oben

H Einstellsysteme


Feinstverstellung

Die Feinstverstellung ist eine konsequente Weiterentwicklung der Kegelschraubenverstellung von vorne. Durch den Einbau einer Verstellpatrone in den Werkzeugträger ist eine extrem präzise Einstellung der Bearbeitungsmaße möglich.

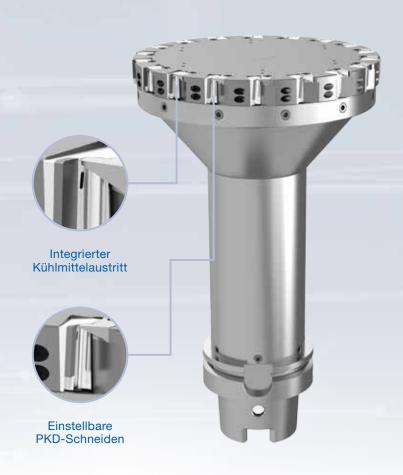
1 Umdrehung ≙ 0,02 mm im Ø

- Verstellelement selbst bei kleinen Senkdurchmessern integrierbar
 Günstigeres Einstellverhältnis → 1 Umdrehung ≜ 0,2 mm im Ø
- µm-genaue Einstellung des Bearbeitungsdurchmessers direkt in der Maschine
- Geringer Maschinenstillstand

Einstellsysteme

SMART SETTING MOTION TOOLS-Verstellung

- Individuelle Feinstverstellung aller Finishschneiden über Einstellpatronen.
 Ein Teilstrich → 0,002 mm im Durchmesser.
- Durchmesserjustierung in beide Richtungen möglich +/-
- Keine Hilfsmittel wie z.B. Reiterlehren zur Voreinstellung erforderlich
- Klemmhalter sowohl mit Exzenterverstellung, als auch mit ISO-Platten verfügbar
- Optional: Klappmechanismus über Zugstange zum Einklappen aller Schneiden
 → dadurch kein Hubmechanismus erforderlich
- Optional: Betätigung mechanisch, über Druckluft oder mit Kühlschmierstoff
- Über 90 % Zeitersparnis pro Verstellzyklus


Zentrale Verstellung

- Einfache Voreinstellung ohne Sonderequipment
- Klemmhalter sowohl mit Exzenterverstellung, als auch mit ISO-Platten verfügbar
- Durchmesserjustierung in beide Richtungen möglich +/- (Zentrale Verstellschraube)
- Automatische Nachjustierung bei Toleranzabweichungen.
 Eine Umdrehung → 0,03 mm im Radius.
- Einklappen der Finishschneiden z. B. durch Einschalten von Druckluft
- Ausklappen der Schneiden im Honfreigang

Vorbearbeitung

HPC-Schruppfräser Ø 163 / L = 232 mm / HSK80-A / Z = 18

Anforderung

Taktzeitreduzierung

Lösuna

HPC-Schruppfräser Ø 163 / L = 232 mm / HSK80-A / Z = 18

Schnittdaten

Ochilittaaten		
Werkstoff		(DIN) ■ AlSi10Mg(Cu) wärmebehandelt
Schneidstoff		PKD 30
Schnittgeschwindigkeit	m/min	3.000
Vorschub pro Zahn	mm	0,14
Schnitttiefe	mm	-6
Encoderate		

Ergebnis

50% schneller als Wettbewerb

Höherer Standweg

Geringere Leistungsaufnahme

Kundenvorteil

Niedrigere Werkzeugkosten pro Bauteil Nahezu spanfreie Bauteile, weniger Reinigungsaufwand Hohe Produktivität und Energieeffizienz

H Zylinderkopf

Fertigbearbeitung

HPC-Fräser mit geschlossenem Spanraum / Ø 250 gewichtsreduziert

Z = 21 + 3 Mischbestückung / Einsatz von Wiper-Schneidplatten

Anforderung

Spanfreie Bauteile

Lösuna

HPC-Fräser mit geschlossenem Spanraum

Schnittdaten

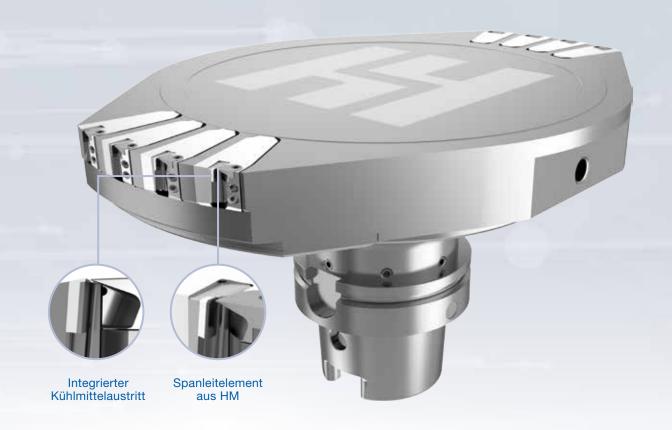
Ochilittaaten		
Werkstoff		(DIN) ■ AlSi10Mg(Cu) wärmebehandelt
Schneidstoff		PKD 30
Schnittgeschwindigkeit	m/min	3.500
Vorschub pro Zahn	mm	0,12
Schnitttiefe	mm	0,5
Encoderate		

Ergebnis

50 % schneller als Wettbewerb

Höherer Standweg

Bessere Oberflächengüte



Kundenvorteil

Niedrigere Werkzeugkosten pro Bauteil Nahezu spanfreie Bauteile, weniger Reinigungsaufwand Hohe Produktivität und Energieeffizienz

HPC-Balkenfräser Ø315 mit HSK-A100 / $Z = 4 + 4 / Z_{eff.} = 8$

Radial einstellbare Kurzklemmhalter → Ausgleich Ungleichteilung

Anforderung

Überfräsen der Brennraumseite, erforderlicher Fräserdurchmesser 315 mm

 R_z 6,3 - R_{max} 7 - Wt3 - PMr \rightarrow 65 %

Kritischer Fähigkeitsindex Cmk 2,74

Maximal zulässiger Werkzeugdurchmesser 250 mm

Lösuna

HPC-Balkenfräser Ø315 mit HSK-A100 / Z = 4 + 4 / $Z_{\text{eff.}}$ = 8

Schnittdaten

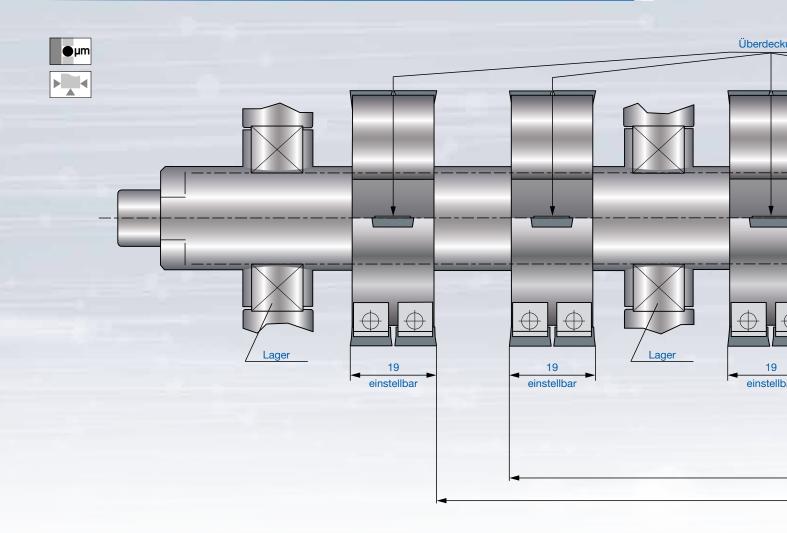
Werkstoff		(DIN) ■ GD-AlSi9Cu3
Schneidstoff		PKD
Schnittgeschwindigkeit	m/min	2.177
Vorschub pro Zahn	mm	0,13
Schnitttiefe	mm	0,28

Ergebnis

Gleichmäßige Oberfläche

R_z1,4 - R_{max}1,67 - Wt1,28 - PMr100%

Kundenvorteil


Hochgenaue Bearbeitung auf einem handelsüblichen BAZ durchführbar (keine Sondermaschine notwendig)

Nahezu spanfreie Bauteile, weniger Reinigungsaufwand

H Zylinderkopf

Lagergasse

Satzfräser / Z_{eff.} = 2

Anforderung

Fräsen der Lagergassenbreite, Planlauf bzw. Fräser zueinander einstellbar

Lösuna

Satzfräser/Zeff. = 2

Schnittdaten

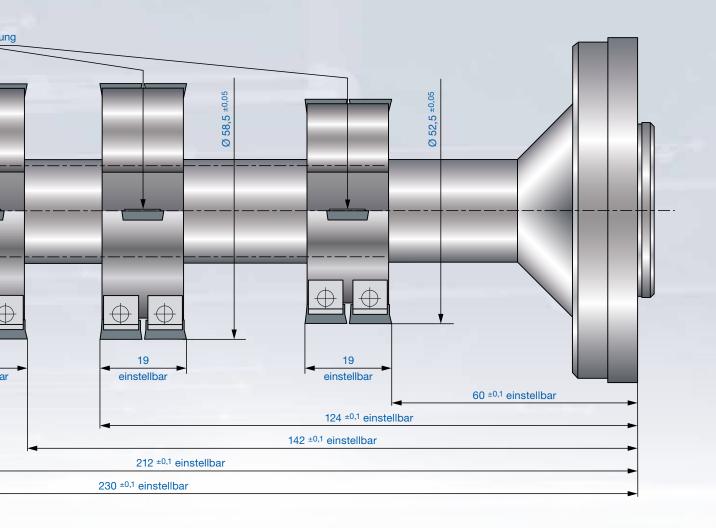
Schilltuaten		
Werkstoff		(DIN) ■ G-AlSi9Cu
Schneidstoff		PKD
Schnittgeschwindigkeit	m/min	220
Vorschub pro Zahn	mm	0,07
Schnitttiefe	mm	0,7-0,8

Ergebnis

PKD-Schneidplatten nachschleifbar und regenerierbar

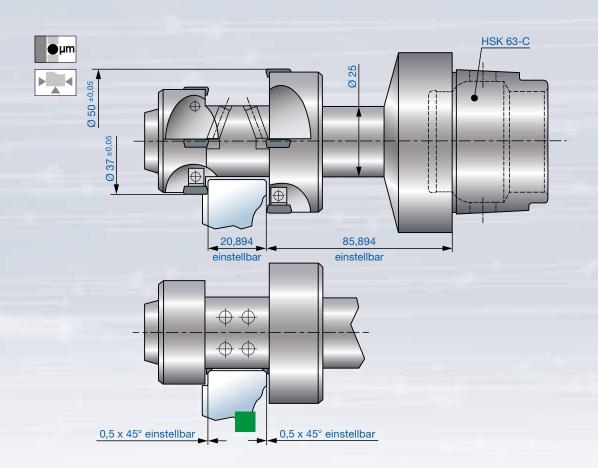
Enge Toleranzen der Lagerabstände erreichbar

Geringer Aufwand zum Schneidplattenwechsel


Kundenvorteil

Niedrigere Werkzeugkosten pro Bauteil

Niedrige Nebenzeiten


Lagergasse

H Zylinderkopf

Passlager

Satzfräser / Z = 2 x 4

Anforderung

Satzfräser zum Fräsen der Passlagerbreite mit gleichzeitigem Anfasen

Passlagerbreite und Fasengrößen µm-genau einstellbar

Lösung

Satzfräser / Z = 2 x 4

Schnittdaten

Werkstoff		(DIN) ■ GKAISi7Mg
Schneidstoff		PKD
Schnittgeschwindigkeit	m/min	1.200
Vorschub pro Zahn	mm	0,1
Schnitttiefe	mm	2,5

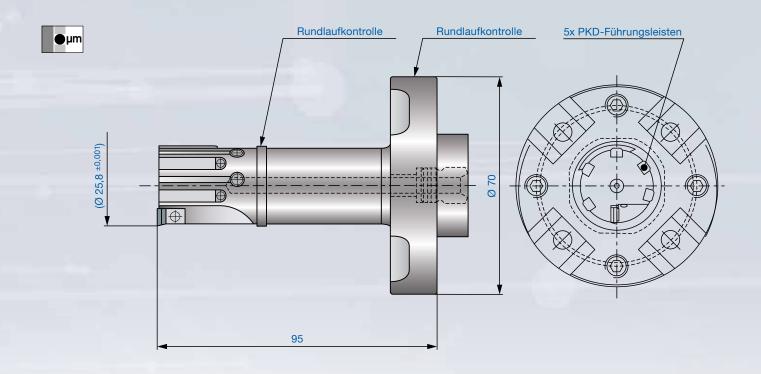
Ergebnis

PKD-Schneidplatten nachschleifbar und regenerierbar

Enge Toleranzen der Lagerabstände erreichbar

Geringer Aufwand zum Schneidplattenwechsel

Geringere Bearbeitungszeit durch Kombinationswerkzeug


Kundenvorteil

Niedrigere Werkzeugkosten pro Bauteil

Niedrige Nebenzeiten

Tassenstößelbohrung

Reibwerkzeug / Z = 1

Anforderung

Feinbearbeitung mit PKD-Führungsleisten

Lösung

Reibwerkzeug / Z = 1

Schnittdaten

Ochilittaaten			
Werkstoff		(DIN) ■ AI	
Schneidstoff		PKD	
Schnittgeschwindigkeit	m/min	800	
Vorschub pro Zahn	mm	0,1	
Schnitttiefe	mm	0,3	

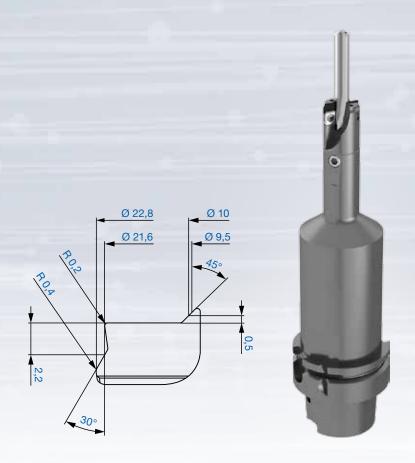
Ergebnis

Enge Form- und Lagetoleranzen werden eingehalten

Oberflächengüte R_a 0,5

Kundenvorteil

Hohe Prozesssicherheit


Einfaches Handling zum Einstellen der Schneidplatten

Federauflage

Bohr- und Senkwerkzeug / Z = 2

Profil-Schneidplatten einstellbar und separat wechselbar

Anforderung

Komplettbearbeitung der Bohrung inklusive der Federauflage

Lösung

Bohr- und Senkwerkzeug / Z = 2

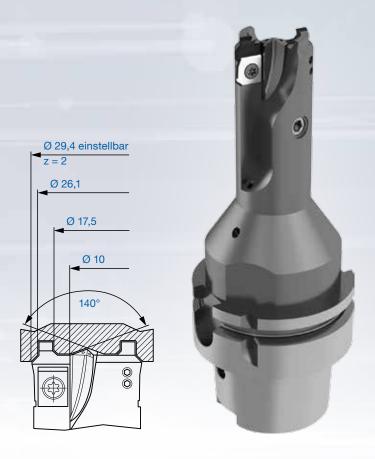
Profil-Schneidplatten einstellbar und separat wechselbar

Schnittdaten

Werkstoff		(DIN) ■ AlSi10Mg(Cu)
Schneidstoff		PKD 10
Schnittgeschwindigkeit	m/min	590
Vorschub pro Zahn	mm	0,075

Ergebnis

Standzeit 85.000 Bohrungen


Einsteckbohrer mehrfach nachschleifbar

Kundenvorteil

Niedrigere Werkzeugkosten pro Bauteil im Vergleich zu fest gelöteten Werkzeugen

Formsenkwerkzeug mit PKD-Schneidplatten und Einsteckbohrer / Z = 2

Anforderung

Komplette Konturbearbeitung mit einem Werkzeug

Lösung

Formsenkwerkzeug mit PKD-Schneidplatten und Einsteckbohrer / Z = 2

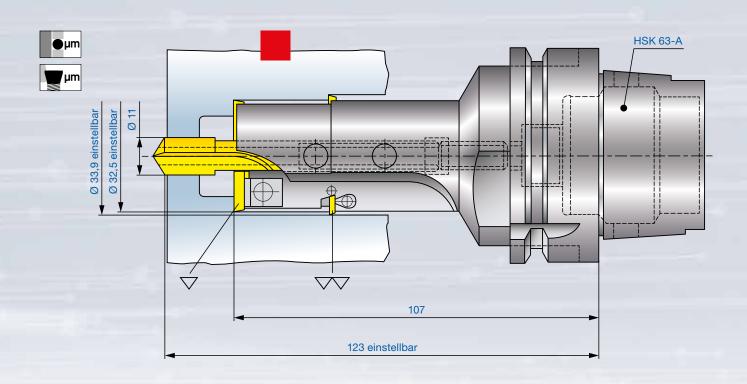
Schnittdaten

Committaaton		
Werkstoff		(DIN) ■ AlSi9Cu
Schneidstoff		PKD
Schnittgeschwindigkeit	m/min	850
Vorschub pro Zahn	mm	0,15
Schnitttiefe	mm	4,3

Ergebnis

Hohe Standzeit (> 70.000 Bohrungen) bei gleichzeitiger Einhaltung sämtlicher

Toleranzen und Oberfächenanforderungen


Kundenvorteil

Geringe Bearbeitungszeit Niedrige Kosten pro Bauteil

H Zylinderkopf

Federauflage

Stufen-Feinbohrwerkzeug / Z = 2 pro Ø

Anforderung

Bohren und Feinbohren der Federauflage

Bohrerlänge einstellbar, Feinbohrdurchmesser einstellbar

Lösung

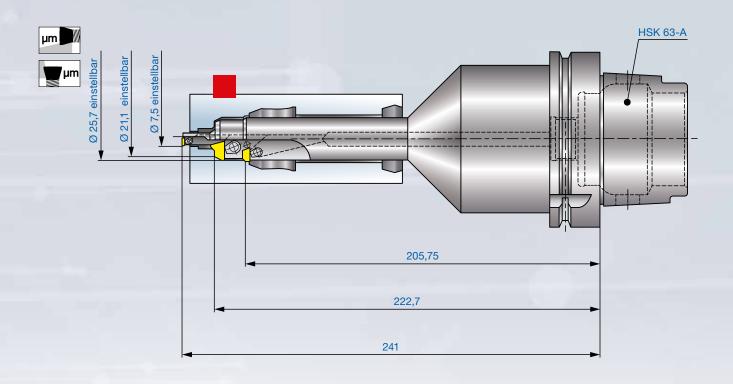
Stufen-Feinbohrwerkzeug / Z = 2 pro Ø

Schnittdaten

Werkstoff		(DIN) ■ GG25
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	(Ø11) 88/(Ø33,9) 258
Vorschub pro Zahn	mm	0,07
Schnitttiefe	mm	-5

Ergebnis

Einsteckbohrer mehrfach nachschleifbar


Schneidplatten einstellbar und separat wechselbar

Kundenvorteil

Niedrigere Werkzeugkosten pro Bauteil im Vergleich zu VHM-Werkzeugen

Stufen-Feinbohrwerkzeug / $Z_{eff.} = 1$

Anforderung

Vorbearbeitung, Formplatten für Sonderprofil

Alle Schneidplatten einstellbar

Lösung

Stufen-Feinbohrwerkzeug / $Z_{eff.} = 1$

Schnittdaten

Werkstoff		(DIN) ■ GG-Cr
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	220
Vorschub pro Zahn	mm	0,07
Schnitttiefe	mm	0,2-0,8
Encoderate		

Ergebnis

Schneidplatten einstellbar und separat wechselbar

Kundenvorteil

Niedrigere Werkzeugkosten pro Bauteil im Vergleich zu VHM-Werkzeugen

Stoßen der Entlastungsnut

Stoßwerkzeug / Z = 1

Anforderung

Reduzierung der Werkzeugkosten und Bearbeitungszeit

Eliminierung teurer Sonderfräser

Lösung

Stoßwerkzeug / Z = 1

Schnittdaten

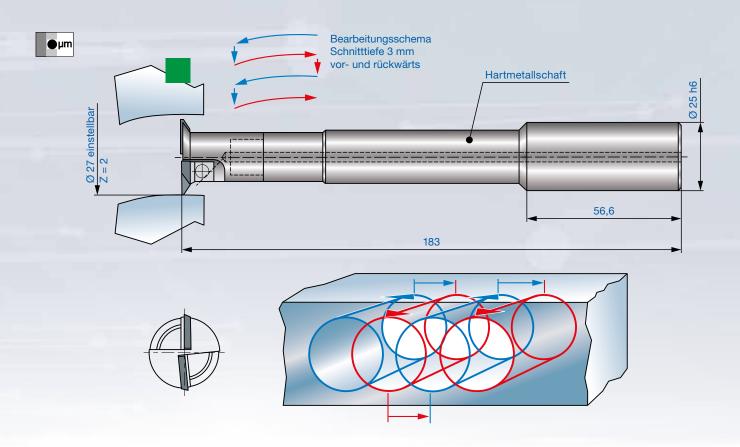
Werkstoff	(DIN) ■ AlSi10Mg(Cu)	
Schneidstoff		PKD
Schnittgeschwindigkeit	m/min	25
Schnitttiefe	mm	0.5 pro Hub

Ergebnis

Sehr hohe Standzeit durch geringe Schnittgeschwindigkeiten

Geringe Werkzeugkosten

Deutliche Reduzierung der Bearbeitungszeit


Kundenvorteil

Geringerer Maschineninvest - keine teure Frässpindel (Schnellläufer)

Niedrigere Werkzeugkosten pro Bauteil

Saugkanalfräser / Z = 2

PKD-Schneidplatten einstellbar und wechselbar

Anforderung

Komplette Bearbeitung der Einlass- und Auslasskanäle

Lösung

Saugkanalfräser / Z = 2

PKD-Schneidplatten einstellbar und wechselbar

Schnittdaten

Werkstoff		(DIN) ■ AISi10
Schneidstoff		PKD 10
Schnittgeschwindigkeit	m/min	1.357
Vorschub pro Zahn	mm	0,35
Schnitttiefe	mm	3 vor- und rückwärts

Ergebnis

Hohe Vorschubgeschwindigkeiten

Gleichmäßige Oberflächengüte

Kundenvorteil

Niedrigere Werkzeugkosten pro Bauteil durch Wechselplattenlösung

HPC-Schruppfräser / Z = 15 / bis 8 mm Schnitttiefe

Anforderung

Standzeit erhöhen

Minimierung der Kantenausbrüche am Bauteil

Lösung

HPC-Schruppfräser / Z = 15

Schnittdaten

Werkstoff		(DIN) ■ AlSi17Cu4 T5/T6	
Schneidstoff		PKD 30	
Schnittgeschwindigkeit	m/min	685	
Vorschub pro Zahn	mm	0,14	
Schnitttiefe	mm	~1,5	

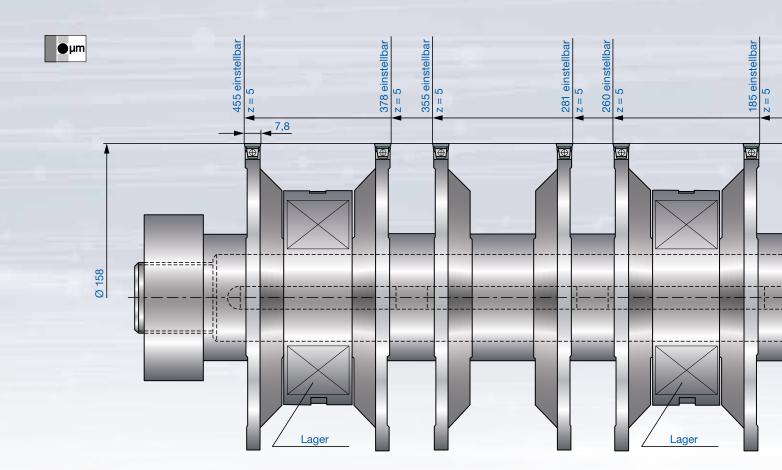
Ergebnis

Standzeitverbesserung um Faktor 4 bis 5

Geringere Leistungsaufnahme

Keine Kantenausbrüche am Bauteil

Kundenvorteil


Niedrigere Werkzeugkosten pro Bauteil Nahezu spanfreie Bauteile, weniger Reinigungsaufwand Hohe Produktivität und Energieeffizienz

H Zylinderkurbelgehäuse

Lagerbreite

Satzfräser / Z = 5 je Fräser

Planlauf bzw. Fräser zueinander einstellbar

Anforderung

Fräsen der Lagerbreite

Planlauf bzw. Fräser zueinander einstellbar

Lösung

Satzfräser / Z = 5 je Fräser

Schnittdaten

Werkstoff		(DIN) ■ GD-AlSi9
Schneidstoff		PKD/K10
Schnittgeschwindigkeit	m/min	500
Vorschub pro Zahn	mm	0,07
Schnitttiefe	mm	-5

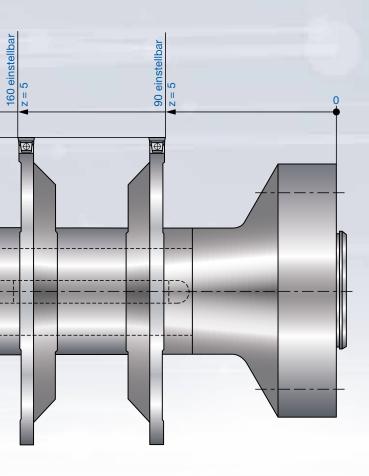
Ergebnis

Einfaches Handling beim Plattenwechseln

Gute Oberflächengüte

PKD-Schneidplatten doppelt verwendbar

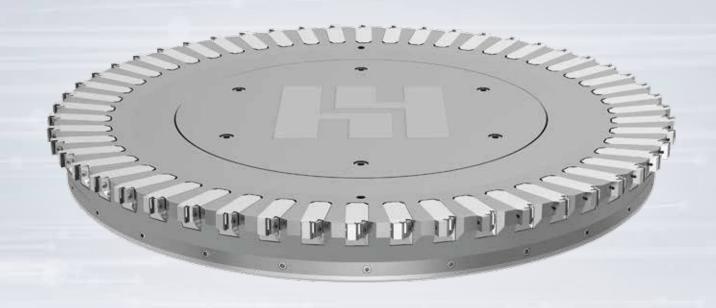
Kundenvorteil


Reduzierte Nebenzeiten

Kostenhalbierung durch doppelt verwendbare PKD-Schneidplatten

Zylinderkurbelgehäuse H

Lagerbreite



H Zylinderkurbelgehäuse

Dichtflächen

Planfräser / Ø 500 mm / Z = 52

Kassettenlösung

Anforderung

Fräsen der Dichtflächen, Aluminium Zylinderkurbelgehäuse

Alle Schneidplatten einstellbar

Lösung

Planfräser / Z = 52

Kassettenlösung

Schnittdaten

Schneidstoff PKD Schnittgeschwindigkeit m/min 3.000 Vorschub pro Zahn mm 0,1 Schnitttiefe mm 0.5	Werkstoff		(DIN) ■ GD-AISi9
Vorschub pro Zahn mm 0,1	Schneidstoff		PKD
	Schnittgeschwindigkeit	m/min	3.000
Schnittliefe mm 0.5	Vorschub pro Zahn	mm	0,1
Committed than 0,0	Schnitttiefe	mm	0,5

Ergebnis

Hervorragende Standzeit

Einfaches Handling zum Einstellen der Schneidplatten

Kundenvorteil

Geringe Kosten pro Bauteil

Reduzierte Nebenzeiten

Zylinderkurbelgehäuse H

Fräsen Passlager

Scheibenfräser mit Schwingungsdämpfer / Z = 16 / $Z_{eff.} = 8$

Anforderung

Fräsen der Lagerfreigänge für die Kurbelwelle

Lösung

Scheibenfräser mit Schwingungsdämpfer / Z = 16 / Z_{eff.} = 8

Schnittdaten

Schnittdaten		
Werkstoff		(DIN) ■ AlSi9Cu3
Schneidstoff		PKD
Schnittgeschwindigkeit	m/min	516
Vorschub pro Zahn	mm	0,08
Schnitttiefe	mm	1,5-8

Ergebnis

Absolut schwingungsfreie und qualitativ hochwertige Oberflächengüte

Kundenvorteil

Hohe Standzeit der PKD-Schneidplatten durch hohe Laufruhe am Werkzeug

H Zylinderkurbelgehäuse

Fräsen Passlager

Fräser mit integriertem Schwingungsdämpfer / Z = 16 (8 + 8)

Anforderung

Maximale Schneidenzahl, Schwingungsdämpfer für hohe Oberflächengüte

Lösung

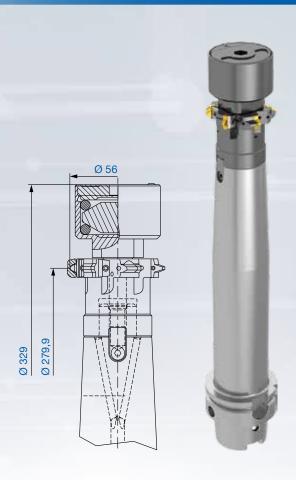
Fräser / Z = 16 (8 + 8)

Schnittdaten

Werkstoff		(DIN) ■ AISi12
Schneidplatte		PKD
Schnittgeschwindigkeit	m/min	650
Vorschub pro Zahn	mm	0,1

Ergebnis

Stabiler Fräsprozess, Oberflächen frei von Vibrationen


Kundenvorteil

Taktzeitreduzierung durch hohe Schneidenzahl Hervorragende Oberflächengüte

Zylinderkurbelgehäuse H

Profilfräsen

Fräser mit Schwingungsdämpfer / Z_{eff.} = 3

Anforderung

Fräsen einer Nut im Lagersteg

Extreme Auskraglänge

Lösung

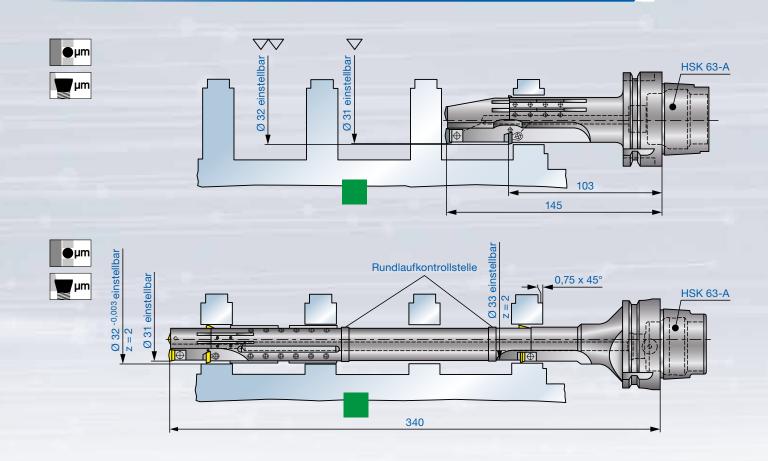
Fräser mit Schwingungsdämpfer / Z_{eff.} = 3

Schnittdaten

Werkstoff		(DIN) ■ GG25
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	345
Vorschub pro Zahn	mm	0,03
Schnitttiefe	mm	3,5

Ergebnis

Ruhiger Lauf und gute Oberflächenqualität durch Einsatz eines Schwingungsdämpfers


Kundenvorteil

Qualitativ hochwertige Bauteile

H Zylinderkurbelgehäuse

Ventilationsbohrung

Bohr- und Feinbohrwerkzeug / Z (Bohren) = $Z_{eff.}$ = 1 / (Senken) = 2

Anforderung

Pilotwerkzeug mit Führungsleisten (Bohren ins Volle - 1. Steg)

Finishwerkzeug mit Führungsleisten (Bohren ins Volle)

Lösung

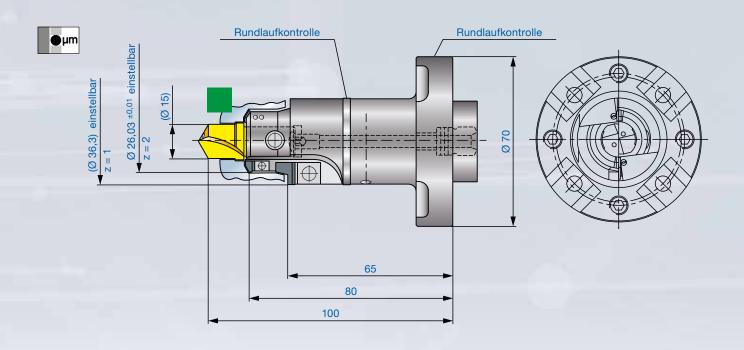
Bohr- und Feinbohrwerkzeug / Z (Bohren) = $Z_{eff.}$ = 1 / (Senken) = 2

Schnittdaten

Werkstoff		(DIN) ■ GK-AlSi17Cu4Mg
Schneidstoff		K10/PKD
Schnittgeschwindigkeit	m/min	320
Vorschub pro Zahn	mm	0,07
Schnitttiefe	mm	ins Volle/0,5
Function		

Ergebnis

Gute Standzeit


Kundenvorteil

Prozesssicherer Produktionsbetrieb

Zylinderkurbelgehäuse H

Anschlussbohrung

Bohr- und Feinbohrwerkzeug / Z = 2 + 2 + 1

Anforderung

Kombinationswerkzeug mit VHM-Bohrer zum Bohren und einstellbaren Schneidplatten zum Feinbohren und Fasen

Lösung

Bohr- und Feinbohrwerkzeug / Z = 2 + 2 + 1

Schnittdaten

Werkstoff		(DIN) ■ AI	
Schneidstoff		PKD	
		Bohren	Feinbohren
Schnittgeschwindigkeit	m/min	193	470
Vorschub pro Zahn	mm	0,3	0,12
Schnitttiefe	mm	ins Volle	5,5

Ergebnis

Einfacher VHM-Bohrer, mehrfach nachschleifbar

Senkdurchmesser einstellbar

H Zylinderkurbelgehäuse

Ausgleichswellenbohrung

Reihenbohrstange mit Kurzklemmhaltern und PKD-bestücktem Führungszapfen

Schwermetallhalter mit Hartmetallleisten zur Stabilisierung

Anforderung

Semi-Finishbearbeitung mit Gegenlagerung im Bauteil

Alle Schneidplatten einstellbar

Lösung

Reihenbohrstange mit Kurzklemmhaltern und PKD-bestücktem Führungszapfen

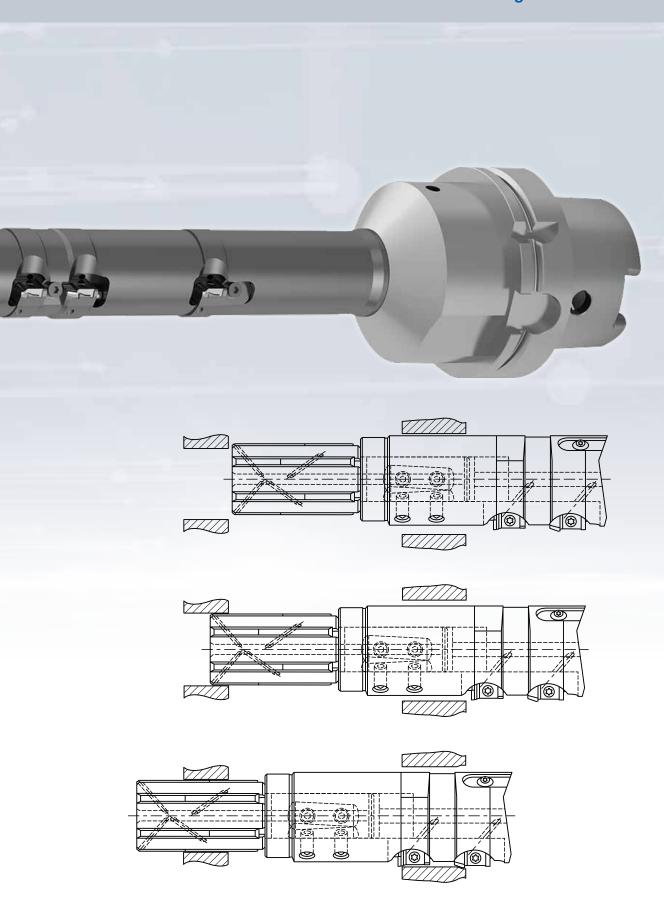
Schwermetallhalter mit Hartmetallleisten zur Stabilisierung

Schnittdaten

Werkstoff		(DIN) ■ AlSi9Cu3
Schneidstoff		PKD
Schnittgeschwindigkeit	m/min	280
Vorschub pro Zahn	mm	0,12
Schnitttiefe	mm	0,5

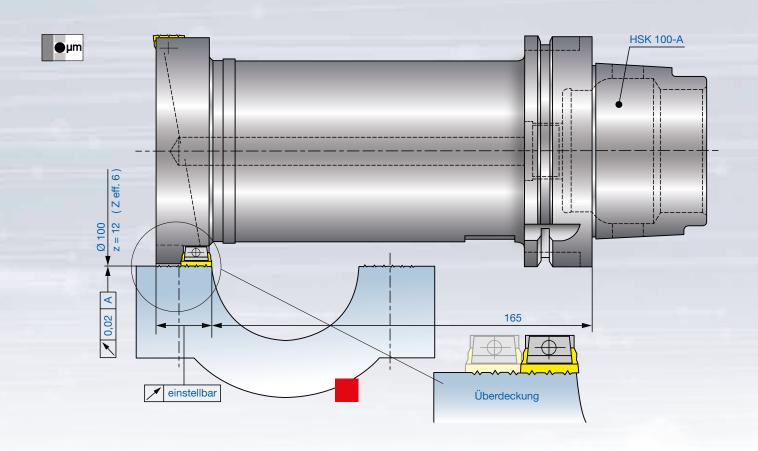
Ergebnis

Hohe Konzentrizität der Lagerstege


Einfaches Werkzeughandling

Zylinderkurbelgehäuse H

Ausgleichswellenbohrung



H Zylinderkurbelgehäuse

Kurbelwellenlagerdeckel

Formfräser / $Z = 2 \times 6$

Profilübergang einstellbar

Anforderung

Formfräser zum Profilieren von Lagerdeckeln

Lösung

Formfräser / $Z = 2 \times 6$

Profilübergang einstellbar

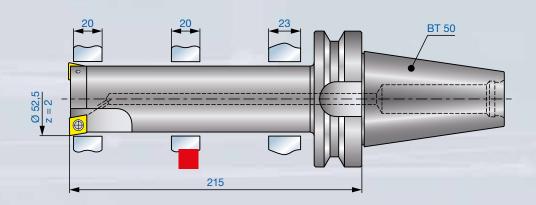
Schnittdaten

Werkstoff		(DIN) ■ GGG40
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	240
Vorschub pro Zahn	mm	0,1
Schnitttiefe	mm	1
Function		

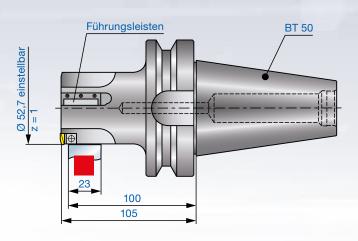
Ergebnis

Geringe Schnittkräfte durch Schnittaufteilung

Kundenvorteil


Kostengünstige Wechselplattenlösung

Zylinderkurbelgehäuse H


Kurbelwellenbohrung

Operation 1: Senkwerkzeug / Z = 2

Operation 2: Feinbohrwerkzeug / Z = 1

Anforderung

Operation 1: Vorbearbeitung von 2 Seiten

Operation 2: Pilotbohrung

Lösung

Operation 1: Senkwerkzeug / Z = 2 Operation 2: Feinbohrwerkzeug / Z = 1

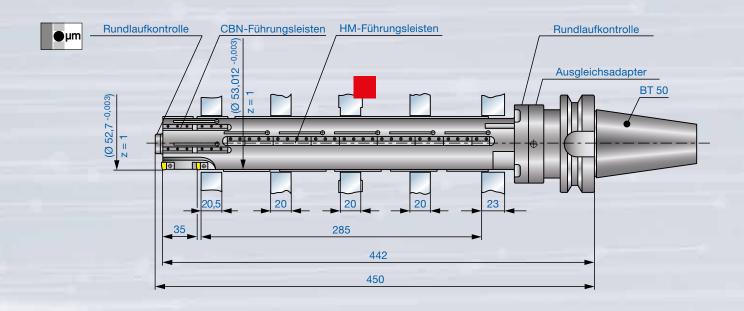
Schnittdaten		Operation 1	Operation 2
Werkstoff		(DIN) ■ GG	
Schneidstoff		HM-beschichtet	
Schnittgeschwindigkeit	m/min	150	135
Vorschub pro Zahn	mm	0,2	0,1
Schnitttiefe	mm	2,5	0,1

Ergebnis

Einfaches Werkzeughandling durch Exzenterbolzenverstellung

Führungsleisten einfach austauschbar

Kundenvorteil


Reduzierte Nebenzeiten

Qualitativ hochwertige Bauteile

H Zylinderkurbelgehäuse

Kurbelwellenbohrung

Operation 3: Feinbohrwerkzeug / Z = 1 + 1

Anforderung

Operation 3: Fertigbearbeitung

Lösung

Operation 3: Feinbohrwerkzeug / Z = 1 + 1

Operation 3: Feinbornwerkzeug / Z = 1 + 1			
Schnittdaten		Operation 3	
Werkstoff		(DIN) ■ GG	
Schneidstoff		HM-beschichtet	
Schnittgeschwindigkeit	m/min	238	
Vorschub pro Zahn	mm	0,1	
Schnitttiefe	mm	0,1	

Ergebnis

Einfaches Werkzeughandling durch Exzenterbolzenverstellung

Führungsleisten einfach austauschbar

Kundenvorteil

Reduzierte Nebenzeiten Qualitativ hochwertige Bauteile

Zylinderkurbelgehäuse H

Zylinderlauffläche

Senkwerkzeug mit integriertem Schwingungsdämpfer, einstellbaren Kurzklemmhaltern und ISO-Wendeschneidplatten / Z=5

Anforderung

Schruppbearbeitung

Ø 74±01

Lösung

Senkwerkzeug mit einstellbaren Kurzklemmhaltern und ISO-Wendeschneidplatten / Z = 5

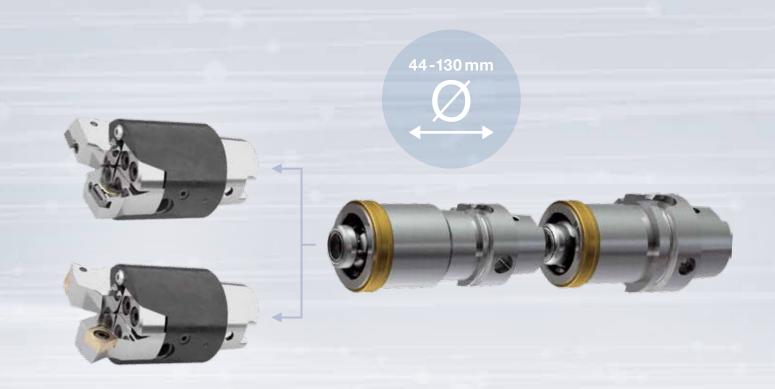
Schnittdaten

Werkstoff		(DIN) ■ GG25
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	150
Vorschub pro Zahn	mm	0,2
Schnitttiefe	mm	Ø1-1,5
English to the		

Ergebnis

Sehr gute Standzeiten

Stabiler Bearbeitungsprozess


Kundenvorteil

Geringe Kosten pro Bauteil

H Zylinderkurbelgehäuse

Zylinderlauffläche

Aufbohrsystem GA 200 Vario / Z = 2 für Vor- und Fertigbearbeitung

Anforderung

Schruppbearbeitung

Ø 72,5±0,2 R_z100

Lösung

GA 200 Vario / Z = 2

Schnittdaten

Werkstoff		(DIN) ■ GG
Schneidstoff		CBN
Schnittgeschwindigkeit	m/min	649
Vorschub pro Zahn	mm	0,2
Schnitttiefe	mm	Ø1,5-2

Ergebnis

Erhöhung der Standmenge

Einfaches Werkzeughandling

Kundenvorteil

Geringe Bearbeitungskosten

Fräsen Honfreigang

Enge Schneidenteilung

Unterschiedliche Schneidstoffe verwendbar

Hohe Vorschübe durch die robuste Lösung mit stabilem Kernquerschnitt

Anforderung

Fräsen Honfreigang in der Zylinderbohrung

Mischbearbeitung Al/GG

Lösung

Zirkularfräser mit festen Plattensitzen

Doppelt positive Schneidengeometrie

Schnittdaten

	■AlSi9/■GG25
	PKD/Hartmetall mit PROTON beschichtet
m/min	242
mm	0,18
mm	6-7
	mm

Ergebnis

Kurze Bearbeitungszeit bei hoher Schnitttiefe

Kundenvorteil

Robuste Lösung → hohe Vorschübe möglich Individuelles Wechslen der Schneidplatten

→ niedrige Kosten pro Bauteil

H Zylinderkurbelgehäuse

Zylinderlauffläche

Aussteuerbares Werkzeug / Z = 1

SMART SETTING MOTION TOOLS-Konzept

Anforderung

Einfaches Werkzeughandling

Lösung

Aussteuerbares Werkzeug / Z = 1

SMART SETTING MOTION TOOLS-Konzept

Schnittdaten

Werkstoff		(DIN) GG 25
Schneidstoff		CBN
Schnittgeschwindigkeit	m/min	750
Vorschub pro Zahn	mm	0,28
Schnitttiefe	mm	0,3

Ergebnis

Vollautomatische Durchmessereinstellung

Kundenvorteil

Erhöhung der Standmenge

Sehr einfaches Handling und sehr genaue Verstellung

Zylinderkurbelgehäuse H

Zylinderlaufbuchse

Aussteuerbares Werkzeug / Z = 3 + 2

SMART SETTING MOTION TOOLS-Konzept und Ansteuerung der Zugstange über Druckluft

Anforderung

Reduzierung der Bearbeitungskosten

Lösuna

Aussteuerbares Werkzeug / Z = 3 + 2

SMART SETTING MOTION TOOLS-Konzept

Ansteuerung der Zugstange über Druckluft

Schnittdaten

Werkstoff		(DIN) ■ GG
Schneidstoff		CBN
Schnittgeschwindigkeit	m/min	700
Vorschub pro Zahn	mm	0,18
Schnitttiefe	mm	0,3

Ergebnis

Semi-Finish- und Finishbearbeitung in einem Werkzeug

Keine Rückzugsriefen durch klappbare Schneidplatten

Kundenvorteil

Hohe Prozesssicherheit Einfaches Werkzeughandling

H Zylinderkurbelgehäuse

Kurbelwellenlagergasse

Reihenbohrstange $Z = 5 + 5 / Z_{eff.} = 1 + 1$

SMART SETTING MOTION TOOLS-Konzept

Anforderung

Reduzierung der Nebenzeit und der Taktzeit

Definierte Oberfläche R_z 12-20

Lösung

Reihenbohrstange $Z = 5 + 5 / Z_{eff.} = 1 + 1$

SMART SETTING MOTION TOOLS-Konzept

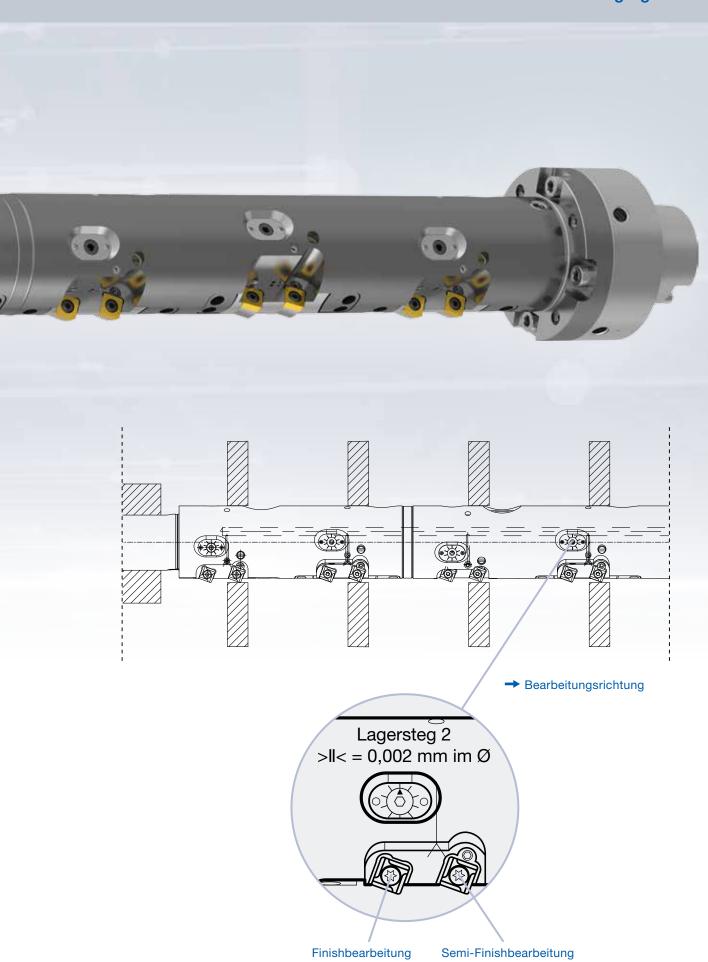
Schnittdaten

Werkstoff		(DIN) ■ GG25		
Schneidstoff		VHM		
Schnittgeschwindigkeit	m/min	185		
Vorschub pro Zahn	mm	0,27/0,2		
Schnitttiefe	mm	0,5		

Ergebnis

Reduzierung der Nebenzeiten zum Nachjustieren der Schneidplatten: von 20 Minuten auf 2 Minuten

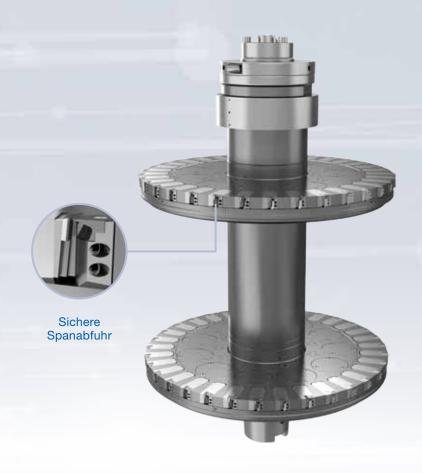
Einfaches Handling


Kundenvorteil

Hohe Prozesssicherheit Reduzierte Nebenzeiten

Zylinderkurbelgehäuse H

Kurbelwellenlagergasse



Getriebekomponente H

Schaltschiebergehäuse

HPC-Satzfräser Ø380 mm / $Z = 2 \times 33$

Abstand der Fräser einstellbar (Maß 280 mm)

Anforderung

Planfräsen der Dichtfläche

Spanfreie Bauteile

Gleichzeitige Bearbeitung von zwei Bauteilen

Lösung

HPC-Satzfräser Ø380 mm / Z = 2 x 33

Abstand der Fräser einstellbar (Maß 280 mm)

Schnittdaten

Werkstoff		(DIN) ■ AISi7
Schneidstoff		PKD
Schnittgeschwindigkeit	m/min	780
Vorschub pro Zahn	mm	0,07
Schnitttiefe	mm	0,5

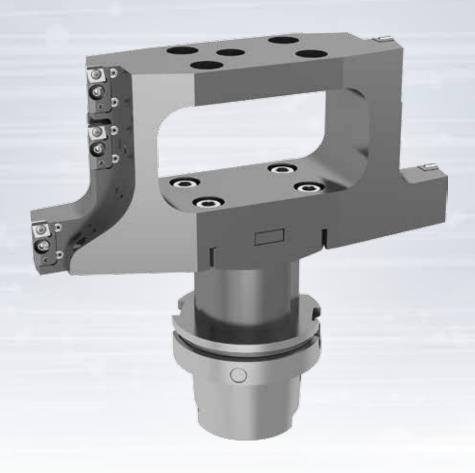
Ergebnis

Hervorragende Oberflächengüte

Sehr gute Standzeiten

Kundenvorteil

Nahezu spanfreie Bauteile, weniger Reinigungsaufwand Niedrigere Werkzeugkosten pro Bauteil


H Getriebegehäuse

Vorbearbeitung

Stufen-Senkwerkzeug Ø206 mm + Ø209 mm + Ø285 mm / Z = 2 + 2 + 2

Werkzeuggrundkörper aus Stahl und Aluminium mit Kurzklemmhaltern

Anforderung

Minimierung Werkzeuggewicht und Werkzeugabmaße

Lösung

Stufen-Senkwerkzeug / Z = 2 + 2

Werkzeuggrundkörper aus Stahl und Aluminium mit Kurzklemmhaltern

Schnittdaten

Werkstoff		(DIN) ■ AIADC10
Schneidstoff		PKD
Schnittgeschwindigkeit	m/min	1.200
Vorschub pro Zahn	mm	0,12

Ergebnis

Geringeres Werkzeuggewicht

Kundenvorteil

Platzersparnis innerhalb des Wekzeugmagazins durch schlanke Bauweise Niedrigere Kosten durch Standard-Kurzklemmhalter und ISO-Schneidplatten

Getriebegehäuse H

Vorbearbeitung

Stufen-Senkwerkzeug Ø219 mm + Ø220 mm / Z = 2 + 4

Werkzeuggrundkörper aus Stahl und Aluminium mit Kurzklemmhaltern

Anforderung

Minimierung Werkzeuggewicht und Werkzeugabmaße

Lösung

Stufen-Senkwerkzeug / Z = 4 + 2

Werkzeuggrundkörper aus Stahl und Aluminium mit Kurzklemmhaltern

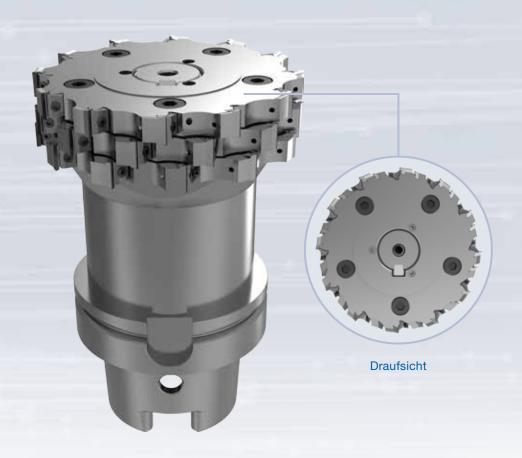
Schnittdaten

Werkstoff		(DIN) ■ AIADC10
Schneidstoff		PKD
Schnittgeschwindigkeit	m/min	1.200
Vorschub pro Zahn	mm	0,1

Ergebnis

Geringeres Werkzeuggewicht

Kundenvorteil


Kürzere Bearbeitungszeit

Niedrigere Kosten durch Standard-Kurzklemmhalter und ISO-Schneidplatten

H Getriebegehäuse

Schulterbearbeitung

"Igelfräser" Ø 125 / Z = 36 / $Z_{eff.} = 12$

Anforderung

Hohe Oberflächengüte auf Plan- und Schulterfläche

Lösung

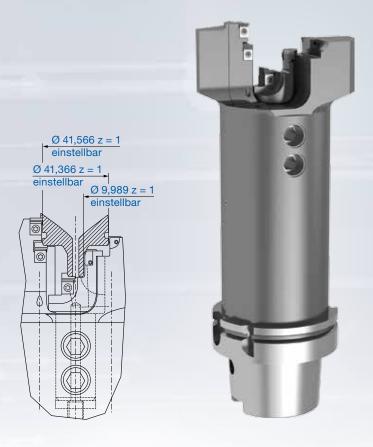
 $Igelfräser / Z = 36 / Z_{eff.} = 12$

Schnittdaten

Committaaton			
Werkstoff		(DIN) ■ AlSi9Cu3	
Schneidstoff		PKD 10	
Schnittgeschwindigkeit	m/min	2.500	
Vorschub pro Zahn	mm	0,12	
Schnitttiefe	mm	0,8	

Ergebnis

Nahezu absatzfreie Schulter durch hohe Rundlaufgenauigkeit



Kundenvorteil

Schneidplatten separat austauschbar Hohe Produktivität und Energieeffizienz

Bearbeitung eines Anschlusszapfens

Kombinationswerkzeug mit einstellbaren Schneidplatten - Exzenterverstellung / $Z = 5 / Z_{eff.} = 1$

Anforderung

Hohe Rundlaufanforderung und Konzentrizität der einzelnen Durchmesser zueinander

Einstellbarkeit der Schneidplatten

Lösung

Kombinationswerkzeug mit einstellbaren Schneidplatten - Exzenterverstellung / Z = 5 / $Z_{eff.}$ = 1

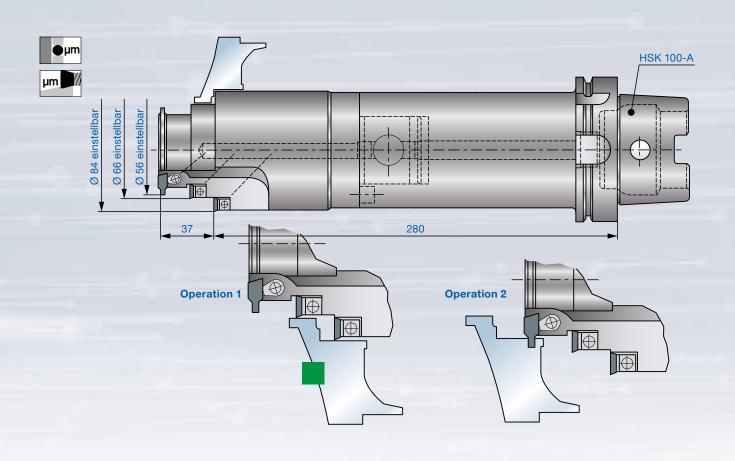
Schnittdaten

Werkstoff		(DIN) ■ AISi9	
Schneidstoff		PKD	
Schnittgeschwindigkeit	m/min	1.380	
Vorschub pro Zahn	mm	0,15	

Ergebnis

Einfaches Handling zum Nachstellen der Schneidplatten

Kundenvorteil


Reduzierte Nebenzeiten

Kostengünstige Wechselplattenlösung

H Getriebegehäuse

Lagersitze

Feinbohr- und Zirkularfräswerkzeug / Z = 3 je Ø

Anforderung

Kombinationswerkzeug zum Feinbohren und Zirkularfräsen

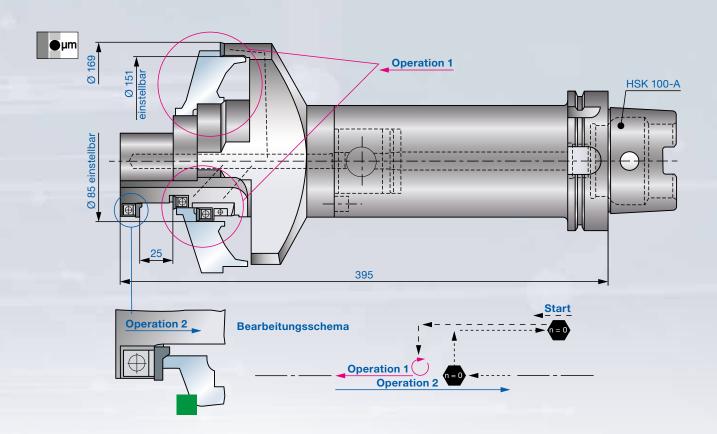
Lösung

Feinbohr- und Zirkularfräswerkzeug / Z = 3 je \emptyset

Schnittdaten

Werkstoff		(DIN) ■ AISi9	9
Schneidstoff		PKD	
		Feinbohren	Fräsen
Schnittgeschwindigkeit	m/min	450	517
Vorschub pro Zahn	mm	0,08	0,12
Schnitttiefe	mm	-4	-4
Function			

Ergebnis


Schneidplatten separat austauschbar

Kundenvorteil

Niedrigere Werkzeugkosten pro Bauteil

Feinbohrwerkzeug / $Z = 5 / Z_{eff.} = 1$

Anforderung

Kombinationswerkzeug zum Vorwärts- und Rückwärtsfeinbohren

und Außendurchmesserüberdrehen

Lösung

Feinbohrwerkzeug / $Z = 5 / Z_{eff.} = 1$

Schnittdaten

Committaaten		
Werkstoff		(DIN) ■ AISi9
Schneidstoff		PKD
Schnittgeschwindigkeit	m/min	(Ø 85) 450
Vorschub pro Zahn	mm	0,12

Ergebnis

Schneidplatten separat austauschbar

Kundenvorteil

Kürzere Bearbeitungszeit

Niedrigere Werkzeugkosten pro Bauteil

H Getriebegehäuse

Ventilplatte

Planfräser Ø49 mm mit Schwermetallschaft (schwingungsdämpfende Wirkung) / Z = 8

Anforderung

Axial ins Bauteil eintauchen, Fläche von hinten durch die Spannvorrichtung planfräsen

 $PMr(3)>\!\!50\,\%$ - R_z8 - $R_{max}10$ und axial einstellbar

Lösung

Planfräser mit Schwermetallschaft (schwingungsdämpfende Wirkung) / Z = 8

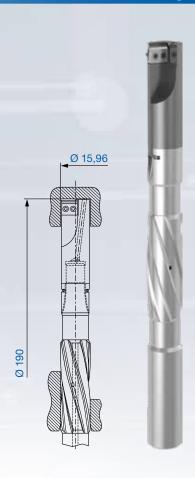
Schnittdaten

Schneidstoff PKD Schnittgeschwindigkeit m/min 2.700 Vorschub pro Zahn mm 0,034 - 0,069 - 0,086 Schnitttiefe mm 0.6	Werkstoff		(DIN) ■ GD-AlSi9Cu3
Vorschub pro Zahn mm 0,034 - 0,069 - 0,086	Schneidstoff		PKD
·	Schnittgeschwindigkeit	m/min	2.700
Schnitttiefe mm 0.6	Vorschub pro Zahn	mm	0,034 - 0,069 - 0,086
	Schnitttiefe	mm	0,6

Ergebnis

Sehr hohe Oberflächengüte

PMr(3) 100 % - R_z2,2 - R_{max}2,6



Kundenvorteil

Sehr hohe Standmenge Sehr gute Oberflächenqualität

Feinbearbeitungswerkzeug mit HM-Schaft und gedralltem Führungsteil / Z = 1

Anforderung

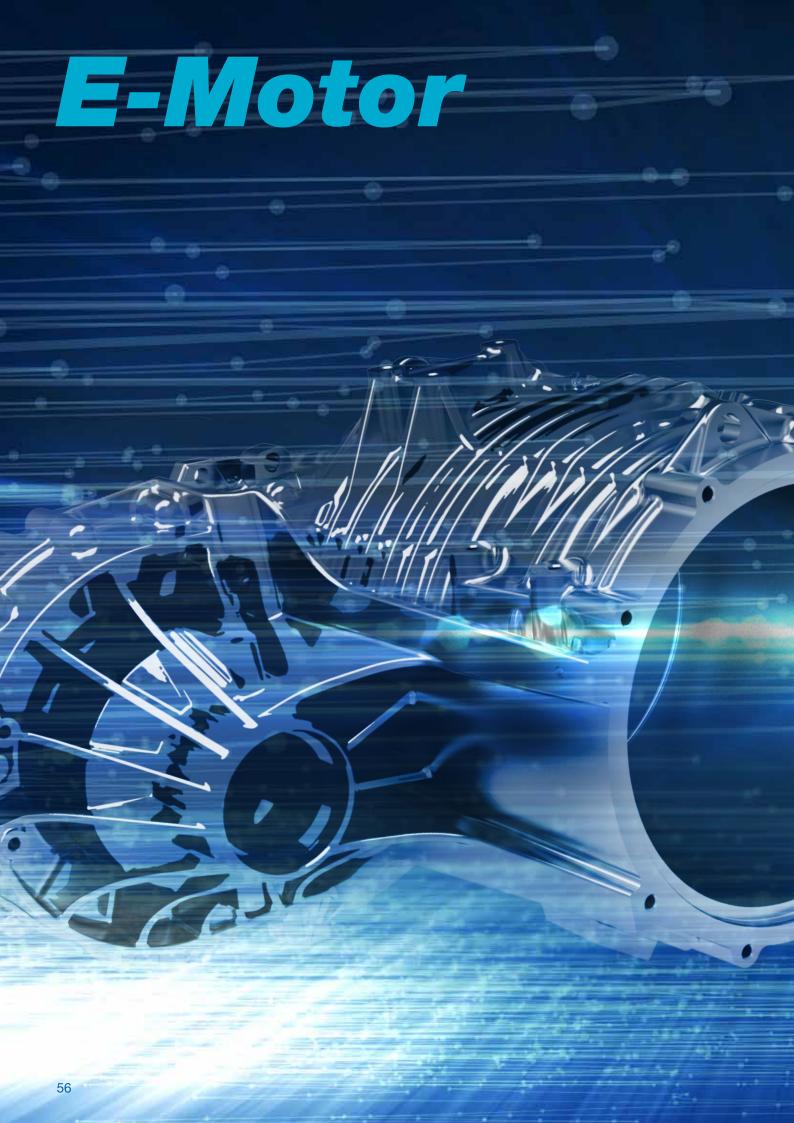
Genauer Durchmesser und hohe Koaxialität

Lösung

Feinbearbeitungswerkzeug mit HM-Schaft und gedralltem Führungsteil / Z = 1

Schnittdaten

Werkstoff		(DIN) ■ AI
Schneidstoff		PKD
Schnittgeschwindigkeit	m/min	449
Vorschub pro Zahn	mm	0,056
Schnitttiefe	mm	-8


Ergebnis

Sehr gute Oberflächenqualität

Kundenvorteil

Weniger Werkzeuge zur Bearbeitung nötig

Vorbearbeitung Statorbohrung E-Motor

Tangentialplattenwerkzeug Z = 4 + 4 + 4

Bearbeitung Außen- und Innendurchmesser Ø218 mm + Ø214 + Ø160 mm

Werkzeuggrundkörper aus Stahl und Aluminium mit Kurzklemmhalter

Anforderung

Prozesssichere Bearbeitung stark schwankender Aufmaße und diverser Absätze

Sicherheitsschnitt für Bodenfläche über 28 mm Breite gefordert

Lösung

Gewichtsreduziertes Stufensenkwerkzeug Z = 4 + 4 + 4

Tangentialplatten mit Untergriff im KKH verbaut, somit sehr stabile Einbettung

Schnittdaten

Werkstoff		■AlSi10MgCu-T6
Schneidstoff		PKD
Schnittgeschwindigkeit	m/min	600 m/min
Vorschub pro Zahn	mm	0,15

Ergebnis

Prozesssichere Bearbeitung bei gleichzeitig hohem Vorschub

Hohe Standzeit durch stabiles Werkzeug

Kundenvorteil

Schruppbearbeitung auf ein Werkzeug reduziert

Geringere Taktzeit

Semi-Finish-Bearbeitung Statorbohrung

einstellbares Vorbearbeitungswerkzeug / Z = 4 + 4 + 2 + 2 + 2

gewichtsreduziertes Werkzeugkonzept mit Kurzklemmhaltern und PKD-Führungsleisten

Anforderung

Exakte Vorbearbeitung für Finish-Werkzeug

Lösung

 ${\bf Einstell bare\ ISO-Wendeschneid platten\ kombiniert\ mit\ verschieden en\ Durchmessern}$

Leichtbauweise mit Aluminium-Grundkörper

Schnittdaten

Werkstoff		■AlSi10MgCu-T6
Schneidstoff		PKD
Schnittgeschwindigkeit	m/min	820
Vorschub pro Zahn	mm	0,12

Ergebnis

Stabiler Bearbeitungsprozess

Kundenvorteil

Vor- und Fertigbearbeitung mehrerer Stufen Geringe Taktzeit durch mehrschneidiges Werkzeug

Fertigbearbeitung Statorbohrung

mehrschneidiges Feinbohrwerkzeug / Z = 6 + 2 + 2 + 2

gewichtsreduziertes Werkzeugkonzept mit Kurzklemmhaltern und PKD-Führungsleisten

Anforderung

Pass-Ø mit hoher Oberflächengüte bei geringer Taktzeit

Lösung

6-schneidiges Werkzeug mit Mischbestückung

Leichtbauweise mit Aluminium-Grundkörper

Schnittdaten

Werkstoff		■AlSi10MgCu-T6
Schneidstoff		PKD
Schnittgeschwindigkeit	m/min	1.000
Vorschub pro Zahn	mm	0,18

Ergebnis

Einhaltung sämtlicher Toleranzen und Oberflächenanforderungen

Kundenvorteil


Geringe Taktzeit durch hohe Vorschubgeschwindigkeit Sehr gute Oberflächengüte

Pumpenraum

Stufen-Feinbohrwerkzeug / Z = 4 / Z_{eff.} = 1

Anforderung

Kombinationswerkzeug, alle Durchmesser einstellbar

Lösung

Stufen-Feinbohrwerkzeug / Z = 4 / Z_{eff.} = 1

Schnittdaten

- Commence		
Werkstoff		(DIN) ■ GGG40
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	(Ø41,35) 197
Vorschub pro Zahn	mm	0,15
Schnitttiefe	mm	-3
Function		

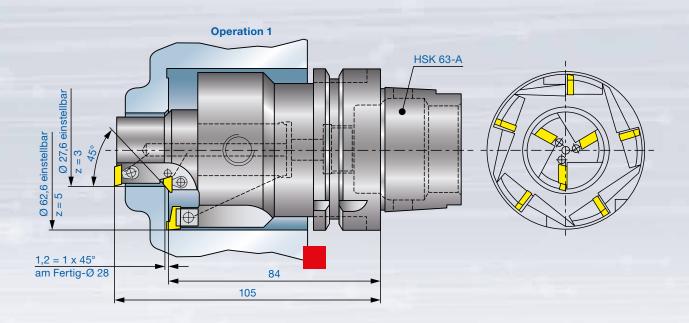
Ergebnis

Flexibles Werkzeugdesign

Schneidplatten separat einstellbar

Kundenvorteil

Hohe Flexibilität bezüglich Durchmesserkorrekturen



Pumpenraum

Operation 1: Stufen-Feinbohrwerkzeug / Z = 3 + 5

Operation 2: Stufenfräser / Z = 4 + 8

Operation 3: Stufen-Feinbohrwerkzeug / Z = 1 + 1 / 3

Anforderung

Operation 1: Feinbohrwerkzeug zum Schruppen des Pumpenraumes

Operation 2: Stufenfräser zum Fräsen des Abstandes (Maß 49) zwischen Pumpenboden und Dichtfläche,

Abstand µm-genau einstellbar

Operation 3: Folgeschnittwerkzeug zur Feinbearbeitung der beiden Durchmesser mit CBN

Lösung

Operation 1: Stufen-Feinbohrwerkzeug / Z = 3 + 5

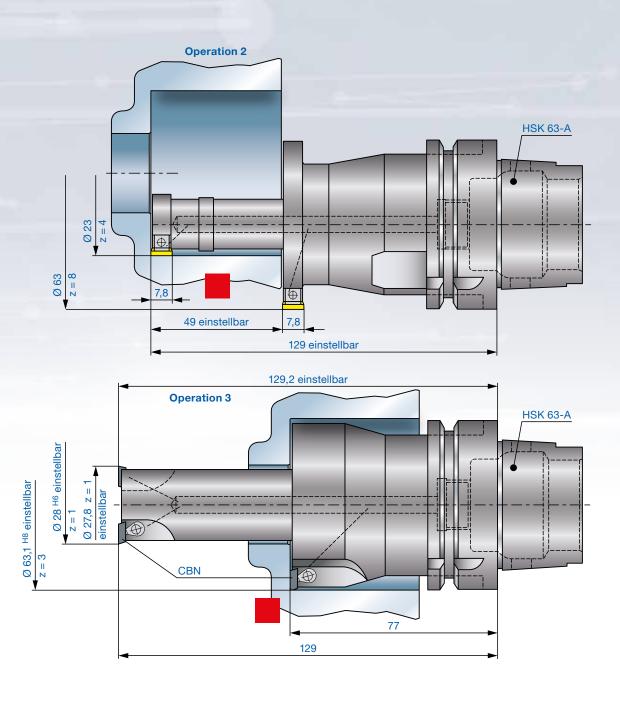
Operation 2: Stufenfräser / Z = 4 + 8

Operation 3: Stufen-Feinbohrwerkzeug / Z = 1 + 1 / 3

Schnittdaten		Operation 1	Operation 2	Operation 3
Werkstoff		(DIN) ■ GG25		
Schneidstoff		HM-beschichtet	HM-beschichtet	CBN
Schnittgeschwindigkeit	m/min	(Ø27,6) 108 (Ø62,6) 242	(Ø23) 92 (Ø63) 250	240
Vorschub pro Zahn	mm	(Ø27,6) 0,15 (Ø 62,6) 0,09	(Ø 23) 0,12 (Ø 63) 0,06	0,1
Schnitttiefe	mm	-3	~ 2	0,2

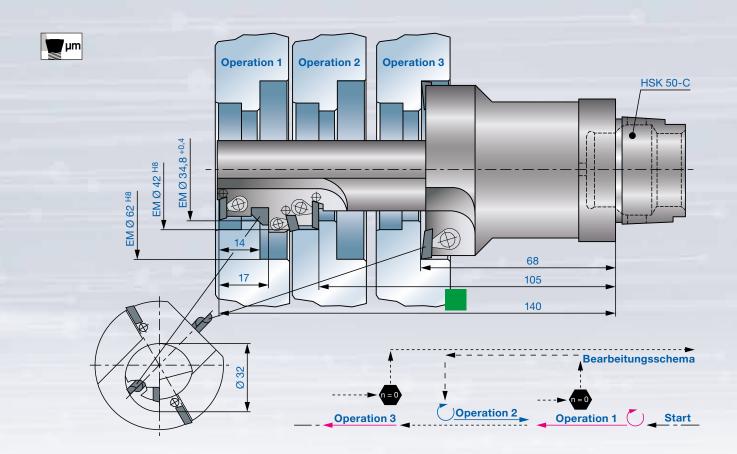
Ergebnis

Reduzierte Bearbeitungszeit


Kundenvorteil

Geringe Kosten pro Bauteil

Hohe Prozesssicherheit



Operation 3: Folgeschnittwerkzeug zur Feinbearbeitung der beiden Durchmesser mit CBN

H Ölpumpe

Vor- und Rückwärts-Feinbohrwerkzeug / $Z = 7 / Z_{eff.} = 1$

Anforderung

Kombinationswerkzeug für bis zu 6 Bearbeitungsschritte

Alle Schneidplatten einstellbar

Lösung

Vor- und Rückwärts-Feinbohrwerkzeug / Z = 7 / $Z_{\text{eff.}} = 1$

Schnittdaten

Werkstoff		(DIN) ■ AISi9
Schneidstoff		PKD
Schnittgeschwindigkeit	m/min	(Ø 62) 467
Vorschub pro Zahn	mm	0,12
Schnitttiefe	mm	0,5

Ergebnis

Kurze Bearbeitungszeit

Schneidplatten separat wechselbar

Kundenvorteil

Geringe Kosten pro Bauteil

Stufen-Feinbohrwerkzeug / $Z_{eff.} = 2$

Anforderung

Mehrstufige Bearbeitung mit einem Werkzeug

Lösuna

Stufen-Feinbohrwerkzeug / Z_{eff.} = 2

Schnittdaten

Werkstoff		(DIN) ■ ENAC-AlSi12CuNiMg
Schneidstoff		PKD 10
Schnittgeschwindigkeit	m/min	1.500
Vorschub pro Zahn	mm	0,13

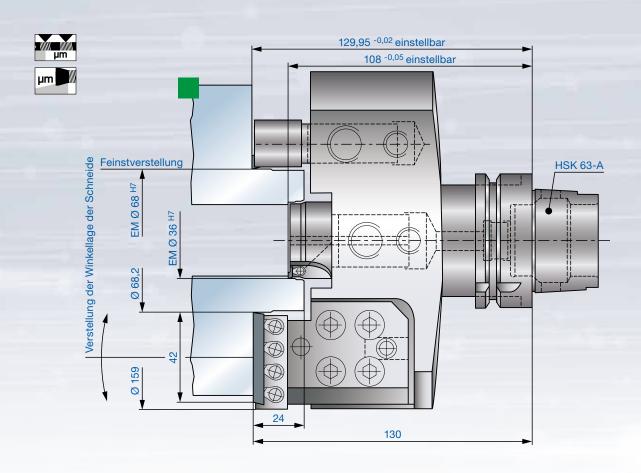
Ergebnis

Kurze Bearbeitungszeit

Sehr gute Oberflächenqualität und Maßhaltigkeit

Schneidplatten je nach Verschleiß separat wechselbar

Kundenvorteil


Taktzeitreduzierung durch Kombination mehrerer Bearbeitungsschritte Geringe Kosten pro Bauteil

H Einspritzpumpe

Flanschbearbeitung

Feinbohrwerkzeug modular aufgebaut

Winkellage der Schneidplatte für Dichtfläche einstellbar

Anforderung

Kombinationswerkzeug für 4 Bearbeitungsschritte, KKH für unterschiedliche Werkstücktypen

Schneidplatten im Durchmesser einstellbar

Lösung

Feinbohrwerkzeug modular aufgebaut

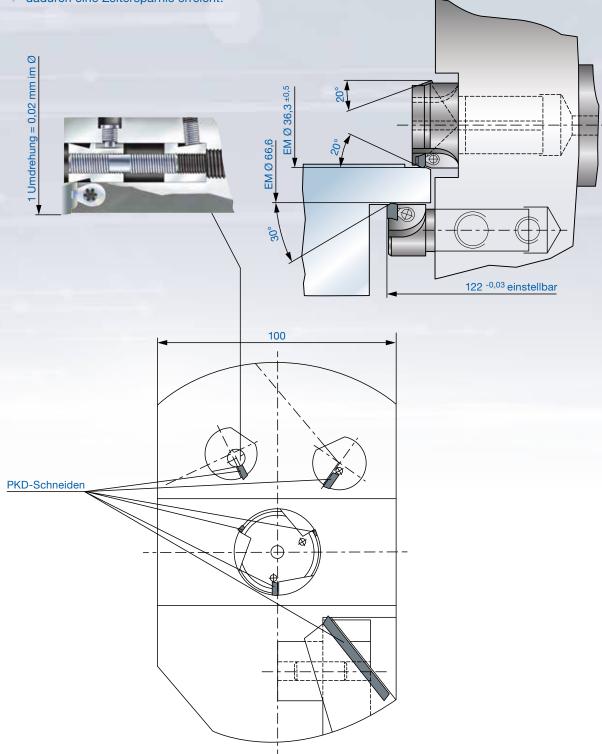
Winkellage der Schneidplatte für Dichtfläche einstellbar

Schnittdaten

Werkstoff		(DIN) ■ GD-AlSi12Cu
Schneidstoff		PKD
Schnittgeschwindigkeit	m/min	(Ø 68) 641
Vorschub pro Zahn	mm	0,12
Schnitttiefe	mm	-4

Ergebnis

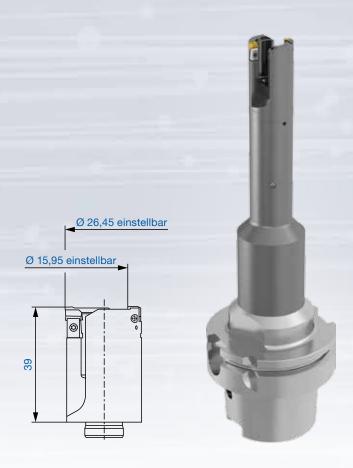
Flexibles Werkzeugdesign für hohe Anforderungen


Einspritzpumpe H

Flanschbearbeitung

Die Feinstverstellung

ermöglicht die extrem präzise Einstellung des Bearbeitungsdurchmessers direkt in der Maschine ohne jegliche Hilfsmittel. Bei kontinuierlich laufenden Prozessen, wie z.B. bei der Serienfertigung in der Automobilindustrie, wird dadurch eine Zeitersparnis erreicht.



H Einspritzpumpe

Tassenstößelbohrung

Axial-Stechwerkzeug mit Schwermetallschaft / $Z = 2 / Z_{eff.} = 1$

Wechselkopfdesign

Anforderung

Stechwerkzeug mit einstellbaren Schneidplatten

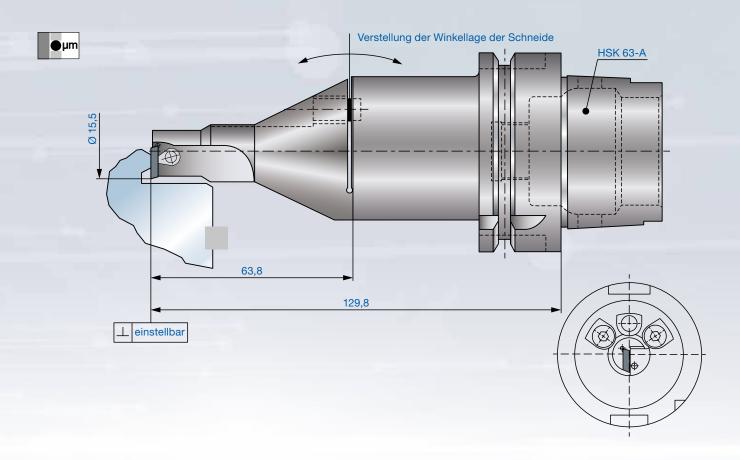
Lösung

Axial-Stechwerkzeug mit Schwermetallschaft / $Z = 2 / Z_{eff.} = 1$

Wechselkopfdesign

Schnittdaten

Werkstoff		(DIN) ■ 20MnCr5
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	(Ø21,2) 121
Vorschub pro Zahn	mm	0,08
Schnitttiefe	mm	ins Volle


Ergebnis

Gute Spankontrolle durch Schnittaufteilung

Gute Oberflächengüte

Feinbohrwerkzeug / Z = 1

Anforderung

Hartbearbeitung der Dichtfläche

Winkellage der Schneidplatten am Werkzeugträger einstellbar

Lösung

Feinbohrwerkzeug / Z = 1

Schnittdaten

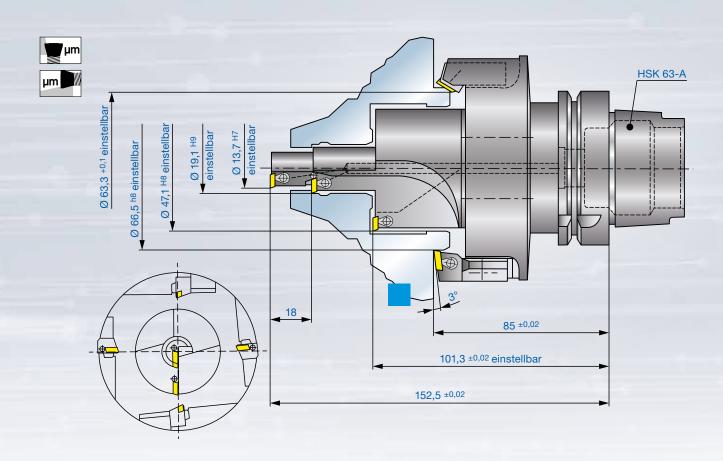
Werkstoff	60-62 HRC	(DIN) ■ 20MnCr5
Schneidstoff		CBN
Schnittgeschwindigkeit	m/min	195
Vorschub pro Zahn	mm	0,025
Schnitttiefe	mm	0,2

Ergebnis

Sehr gute Oberflächengüte

Sehr gute Standzeit

CBN-Schneidplatten nachschleifbar


Kundenvorteil

Geringe Kosten pro Bauteil

H Einspritzpumpe

Nockenraum

Stufen-Feinbohrwerkzeug / $Z = 7 / Z_{eff.} = 1 / (Ø 66,5 + Ø 63,3) Z = 2$

Anforderung

Kombinationswerkzeug für 5 Bearbeitungsschritte

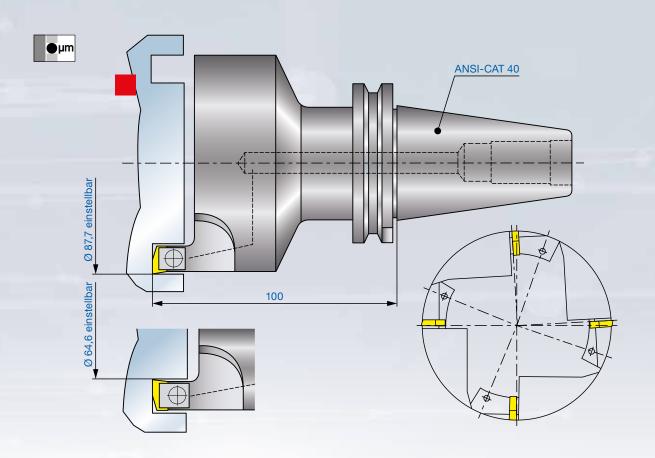
Lösung

Stufen-Feinbohrwerkzeug / Z = 7 / $Z_{eff.}$ = 1 / (\varnothing 66,5 + \varnothing 63,3) Z = 2

Schnittdaten

Werkstoff		(DIN) ■ 20MnCr5
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	(Ø13,7) 37 (Ø66,5) 180
Vorschub pro Zahn	mm	(Ø13,7) 0,15 (Ø66,5) 0,075
Schnitttiefe	mm	(Ø 13,7) 0,5 (Ø 66,5) 0,5-1,5

Ergebnis


Schneidplatten separat einstellbar und austauschbar

Kundenvorteil

Geringe Kosten pro Bauteil

Feinbohr-/Stechwerkzeug / Z = 2 + 2

Anforderung

Innen- und Außendurchmesser einstellbar

Lösung

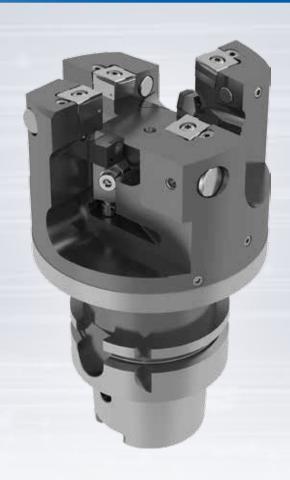
Feinbohr-/Stechwerkzeug / Z = 2 + 2

Schnittdaten

o o i i i i i i i i i i i i i i i i i i		
Werkstoff		(DIN) ■ GG25
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	220
Vorschub pro Zahn	mm	0,1
Schnitttiefe	mm	~ 12, volle Schnittbreite
Function		

Ergebnis

Sehr gute Standzeit


Kundenvorteil

Geringe Kosten pro Bauteil Hohe Prozesssicherheit Einfaches Werkzeughandling

Vorbearbeitung Anschlussflansch

$Stufen-Glockenwerkzeug,\\ stehendes Werkzeug (Drehmaschine) \ / \ Z=2+2+1+1$

Anforderung

Reduzierung der Taktzeit

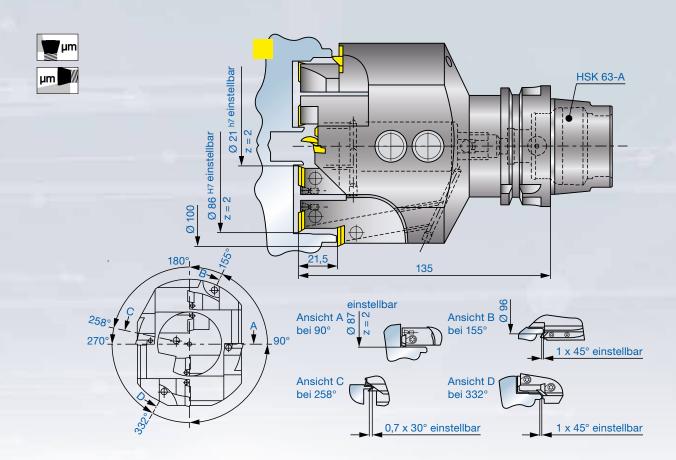
Lösung

Stufen-Glockenwerkzeug, stehendes Werkzeug (Drehmaschine) / Z_{eff.} = 2 / 1

Schnittdaten

Werkstoff		(DIN) X17CrNi16/1.4057
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	200
Vorschub pro Zahn	mm	0,125
Schnitttiefe	mm	4
Function		

Ergebnis


Schnellere Bearbeitung bei gleichbleibender Qualität

Kundenvorteil

Taktzeitreduzierung um 66 %

Stufen-Feinbohrwerkzeug / Z = 2 + 2 + 2 + 1 + 1 + 1 + 1

Anforderung

 $Kombinations werk zeug, \ alle \ Durchmesser \ einstellbar$

Lösung

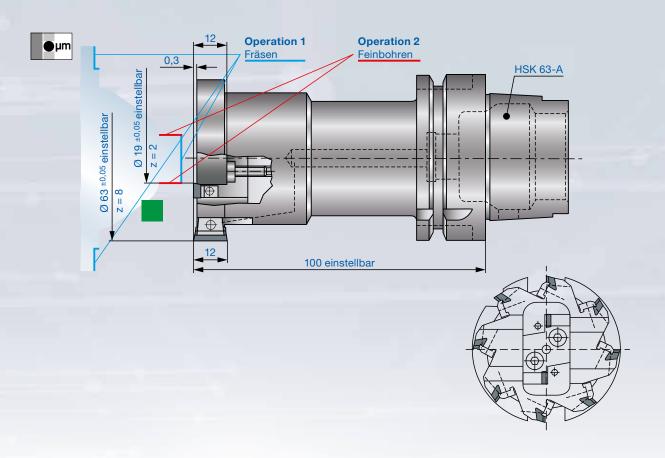
Stufen-Feinbohrwerkzeug / Z = 2 + 2 + 2 + 1 + 1 + 1 + 1

Schnittdaten

• • • • • • • • • • • • • • • • • • • •		
Werkstoff		(DIN) X2CrNi19-11
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	25-100
Vorschub pro Zahn	mm	0,025
Schnitttiefe	mm	0,4
Function		

Ergebnis

Flexibles Werkzeugdesign



Kundenvorteil

Kurze Bearbeitungszeit Geringe Kosten pro Bauteil

Fräs- und Überdrehwerkzeug / Z = 8 (Fräsen), 2 (Feinbohren)

Anforderung

Fräsen und Überdrehen eines Zapfens mit einem Werkzeug

Planlauf des Fräsers und Feinbohrdurchmesser einstellbar

Lösung

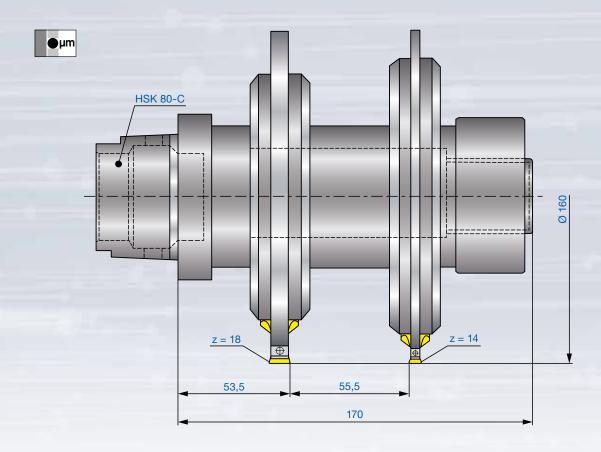
Fräs- und Überdrehwerkzeug / Z = 8 (Fräsen), 2 (Feinbohren)

Schnittdaten

Werkstoff		(DIN) ■ GDAI	Si12
Schneidstoff		PKD	
		Fräsen	Feinbohren
Schnittgeschwindigkeit	m/min	(Ø 63) 1.800	(Ø 19) 543
Vorschub pro Zahn	mm	0,12	0,12
Schnitttiefe	mm	0,8	0,8

Ergebnis

Reduzierte Bearbeitungszeit durch Kombinationswerkzeug


Kundenvorteil

Geringe Kosten pro Bauteil Höhere Produktivität

H Nockenwelle

Mitnehmernut

Satzfräser / Z = 18 / 14

Anforderung

Bearbeitung von zwei verschiedenen Nockenwellentypen mit einem Werkzeug

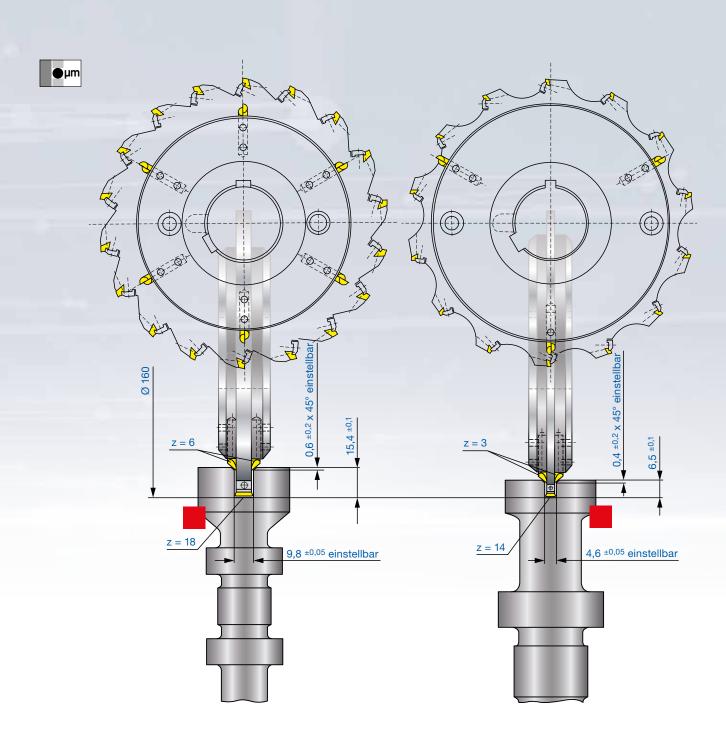
Lösung

Satzfräser / Z = 18/14

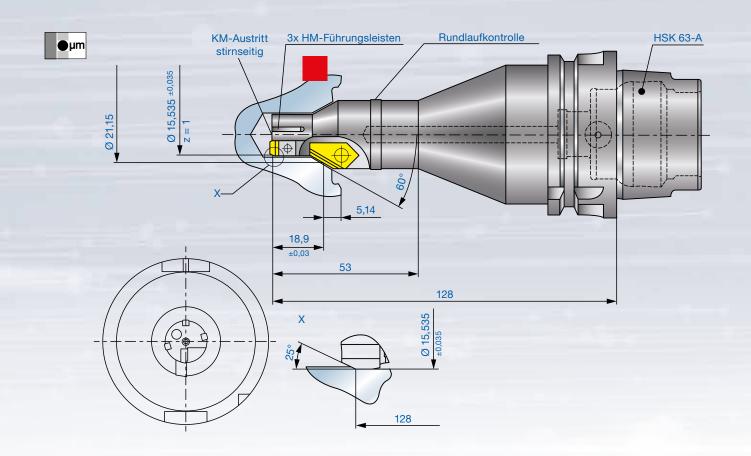
Schnittdaten

Werkstoff		(DIN) ■ GGG40
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	80
Vorschub pro Zahn	mm	0,06
Schnitttiefe	mm	Z = 18/16 Z = 14/7
Encoderate		

Ergebnis


Reduzierung der Nebenzeiten

Einsparung an Bearbeitungsstationen



Mitnehmernut

H Kurbelwelle

Feinbohr- und Faswerkzeug / Z = 1 + 1

Anforderung

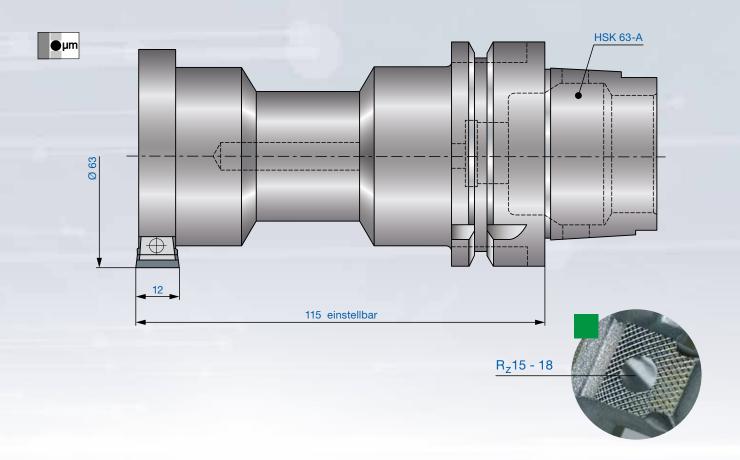
Feinbohrwerkzeug mit HM-Führungsleisten zur Bearbeitung der Flanschbohrung

_ösung

Feinbohr- und Faswerkzeug / Z = 1 + 1

Schnittdaten

Werkstoff		(DIN) ■ GGG60
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	80
Vorschub pro Zahn	mm	0,12
Schnitttiefe	mm	0,15
English and a		


Ergebnis

Hohe Maßgenauigkeit durch Werkzeugkonzept mit Führungsleisten

Sonder-Plan-Eckfräser / Z = 8

Bestückt mit Standard-PKD-Schneidplatten

Anforderung

Fräsen der Dichtfläche mit definierter Rautiefe

Alle Schneidplatten axial einstellbar

Lösung

Sonder-Plan-Eckfräser / Z = 8

Bestückt mit Standard-PKD-Schneidplatten

Schnittdaten

Werkstoff		(DIN) ■ AlSi12Cu		
Schneidstoff		PKD		
Schnittgeschwindigkeit	m/min	3560		
Vorschub pro Zahn	mm	0,16		

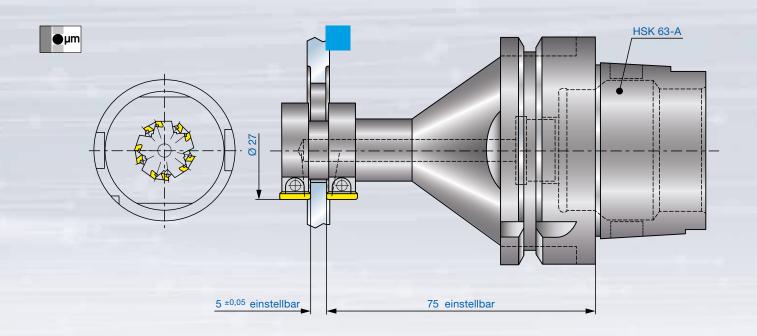
Ergebnis

Hohe Bearbeitungsgeschwindigkeit durch spezielle Schneidplattengeometrie

Konstanter Verschleiß - alle Schneidplatten auf gleiche Höhe eingestellt

Kundenvorteil

Geringe Kosten pro Bauteil


Hohe Produktivität

H Schaltgabel

Scheibenfräsersatz (Monoblock) / $Z = 10 / Z_{eff.} = 5$

Schneidplatten untereinander austauschbar, somit sind beide Schneidecken der Platten verwendbar

Alle Schneidplatten einstellbar (Maß 5 mm)

Anforderung

Sehr labiles Bauteil, erfordert geringe Schnittkräfte der Werkzeuge

Bearbeitung der beiden Ringflächen in einem Schnitt

Lösung

Scheibenfräsersatz (Monoblock) / Z = 10 / $Z_{\text{eff.}}$ = 5

Schneidplatten untereinander austauschbar, somit sind beide Schneidecken der Platten verwendbar

Alle Schneidplatten einstellbar (Maß 5 mm)

Schnittdaten

Werkstoff		(DIN) ■ C35-520 N/mm ²
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	120
Vorschub pro Zahn	mm	0,1
Schnitttiefe	mm	beidseitig 0,6

Ergebnis

Kurze Bearbeitungszeit

Schneidplatten beidseitig verwendbar

Kundenvorteil

Geringe Kosten pro Bauteil

Satzfräser

Große Radien abbildbar

Tangentialplatten mit PKD-Schneiden

Anforderung

Fräsen von Anschlusslaschen in einem Bearbeitungsschritt

Lösung

Satzfräser zum beidseitigen Fräsen von 2 Laschen

Schnittdaten

Werkstoff		■AlSi9
Schneidstoff		PKD
Schnittgeschwindigkeit	m/min	1.250
Vorschub pro Zahn	mm	0,1
Schnitttiefe	mm	3-12!

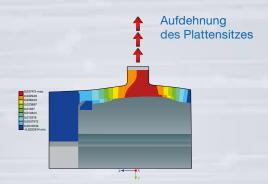
Ergebnis

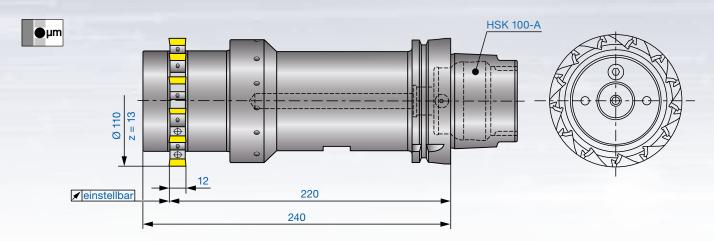
Prozesssichere Bearbeitung von kombinierten Arbeitsschritten

Kundenvorteil

Lange Standzeit durch PKD-bestückte Schneidplatten

Kurze Bearbeitungszeit durch die Kombination mehrerer Arbeitsschritte in einem Werkzeug


H Lenkgehäuse


Dehnreibahle / Z = 13

Verstellbereich 60 μm im Durchmesser → Zustellung 5 μm pro Umdrehung

Frei wählbare wechselbare Schneidplatten

- Durchmesser µm-genau einstellbar
- Verstellung in beide Richtungen möglich
- Verstellbereich 60 µm im Durchmesser
 - → Zustellung 5 µm pro Umdrehung
- Frei wählbare wechselbare Schneidplatten

Anforderung

Durchmesser µm-genau in beide Richtungen einstellbar

Lösung

Dehnreibahle / Z = 13

Verstellbereich 60 µm im Durchmesser → Zustellung 5 µm pro Umdrehung

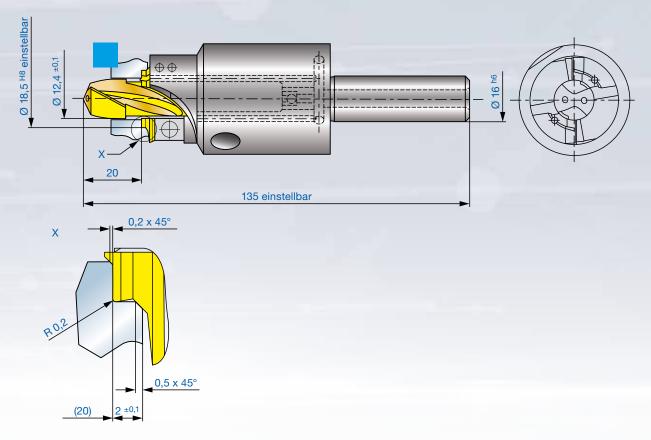
Frei wählbare und wechselbare Schneidplatten

Schnittdaten

Werkstoff		(DIN) ■ GGG50
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	160
Vorschub pro Zahn	mm	0,2
Schnitttiefe	mm	0,25

Ergebnis

Reduzierung der Nebenzeit durch Verstellmöglichkeit direkt an der Maschine



Kundenvorteil

Hohe Prozesssicherheit Hohe Produktivität

Kombinationswerkzeug für die komplette Bauteilkontur

Ø 18,5 HB einstellbar mittels Exzenterverstellung

Anforderung

Kombinationswerkzeug für die komplette Bauteilkontur

Bohr- und Feinbohrwerkzeug / Z = 2

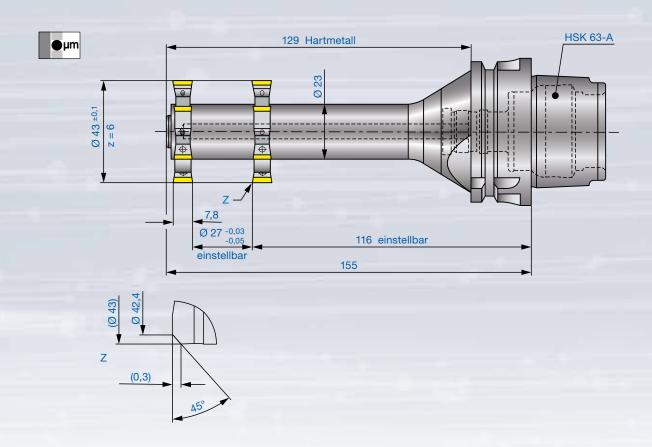
Ø18,5 H8 einstellbar mittels Exzenterverstellung

Schnittdaten

Werkstoff		(DIN) ■ Ck4	(DIN) ■ Ck45			
Schneidstoff		HM-beschichtet				
		Bohren	Feinbohren			
Schnittgeschwindigkeit	m/min	71	141			
Vorschub pro Zahn	mm	0,12	0,08			
Schnitttiefe	mm	ins Volle	3			

Ergebnis

Reduzierung der Bearbeitungszeit durch Kombinationswerkzeug



Kundenvorteil

Geringe Kosten pro Bauteil Höhere Produktivität

H AGW-Gehäuse

Satzfräser / Z = 6 + 6

Anforderung

Bearbeitung der beiden Ringflächen in einem Schnitt

Lösung

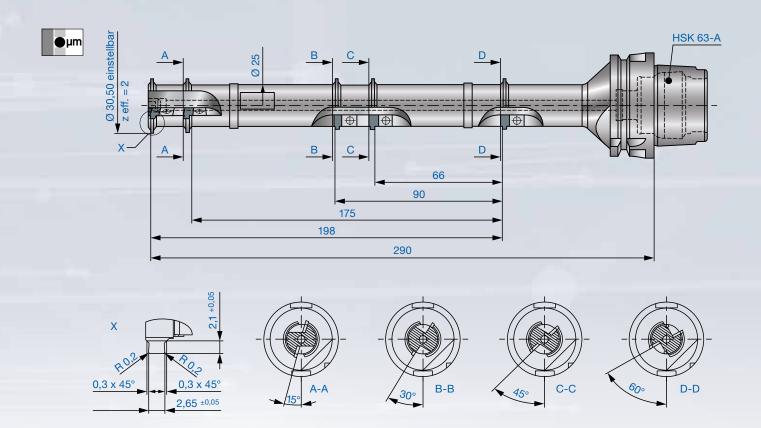
Alle Schneidplatten einstellbar (Maß 5 mm)

Schnittdaten

Werkstoff		(DIN) ■ GG25
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	270
Vorschub pro Zahn	mm	0,15
Schnitttiefe	mm	0,2
Encode at a		

Ergebnis

Kurze Bearbeitungszeit


Schneidplatten beidseitig verwendbar

Kundenvorteil

Geringe Kosten pro Bauteil

Zirkularfräser / Z = 2 + 2 + 2 + 2 + 2 + 2

Anforderung

Zirkularfräser zum Bearbeiten der Nuten

Lösung

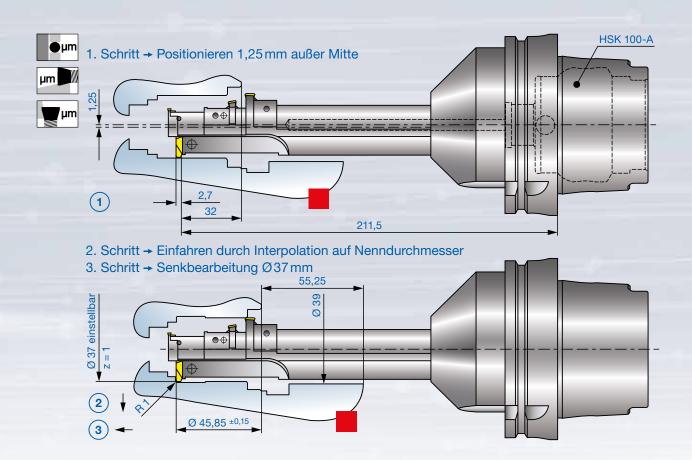
Zirkularfräser / Z = 2 + 2 + 2 + 2 + 2 + 2

Schnittdaten

Werkstoff		(DIN) ■ AI	
Schneidstoff		PKD	
Schnittgeschwindigkeit	m/min	490	
Vorschub pro Zahn	mm	0,1	
Schnitttiefe	mm	0,5-1,0	

Ergebnis

Standmenge verdreifacht



Kundenvorteil

Niedrigere Werkzeugkosten Reduzierung der Handlingskosten

H Bremssattel

Interpolationsdrehwerkzeug / Z = 4 + 1

Anforderung

Kombinationswerkzeug für Ø37 mm plus der Dichtnuten

Lösuna

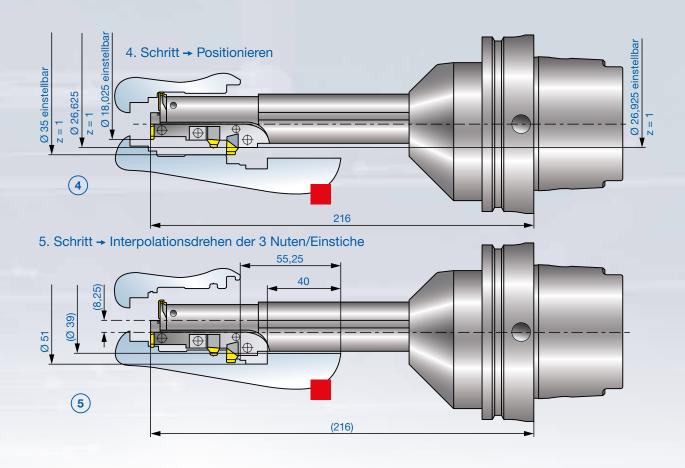
Interpolationsdrehwerkzeug / Z = 4 + 1

Schnittdaten

Werkstoff	(DIN) ■ GGG45	
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	70
Vorschub pro Zahn	mm	0,12
Schnitttiefe	mm	0.75

Ergebnis

Reduzierung der Nebenzeiten durch Kombinationswerkzeug


Hohe Standzeit durch konstanten Schnitt (Interpolationsdrehprozess)

Kundenvorteil

Niedrige Kosten pro Bauteil Hohe Produktivität

Bremssattel H

H Steuergehäuse

Bohr- und Senkwerkzeug mit Wechselplatten

Anforderung

Bearbeitung der kompletten Werkstückkontur mit einem Werkzeug

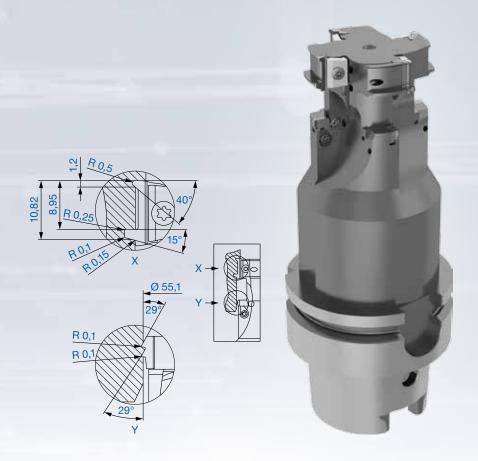
Lösung

Stufenwerkzeug mit Wechselplatten

Schnittdaten

Werkstoff		(DIN) ■ GGG40
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	52 (Ø 27,7)
Vorschub pro Zahn	mm	0,28
Schnitttiefe	mm	ins Volle

Ergebnis


Verdreifachung der Standmenge

Kundenvorteil

Niedrigere Werkzeugkosten Reduzierung der Handlingskosten

Zirkularfräser mit Formschneidplatten / Z = 4 + 4

Anforderung

Zusammenfassung mehrerer Nutbearbeitungen

Lösung

Zirkularfräser mit Formschneidplatten / Z = 4 + 4

Schnittdaten

Werkstoff		(DIN) ■ GD-AlSi9Cu3
Schneidstoff		PKD
Schnittgeschwindigkeit	m/min	1.060
Vorschub pro Zahn	mm	0,13
vorschub pro Zann	mm	0,13

Ergebnis

Hohe Lagegenauigkeit der Nuten und Kantenbrüche zueinander

Mehrere Nuten mit einem Werkzeug herstellbar

Kundenvorteil

Hohe Prozesssicherheit

Hohe Produktivität

H Ausgleichswelle

Mehrschneidiges Glockenwerkzeug / Z = 3 + 1

Kühlmittelaustritt stirnseitig für 1-Kanal MQL-System

Anforderung

Reduzierung der Kosten pro Bauteil

Lösung

Mehrschneidiges Glockenwerkzeug / Z = 3 + 1

Schnittdaten

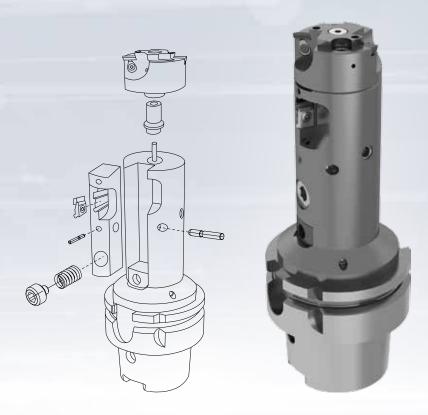
Werkstoff		(DIN) ■ C56E2
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	160
Vorschub pro Zahn	mm	0,2
Schnitttiefe	mm	6mm im Ø

Ergebnis

Erhöhung der Standmenge um 60 %

Geringe Schnittkräfte

Sehr gute Spankontrolle


Kundenvorteil

Deutliche Reduzierung der Kosten pro Bauteil

Aussteuerbares Werkzeug / Z = 2 + 1

SMART SETTING MOTION TOOLS-Konzept

µm-genaue Verstellung des Bearbeitungsdurchmessers durch zentrale Verstellschraube

Smart Setting Motion Tools

Anforderung

Reduzierung der Maschinennebenzeiten

Lösung

Aussteuerbares Werkzeug / Z = 2 + 1

SMART SETTING MOTION TOOLS-Konzept

µm-genaue Verstellung des Bearbeitungsdurchmessers durch zentrale Verstellschraube

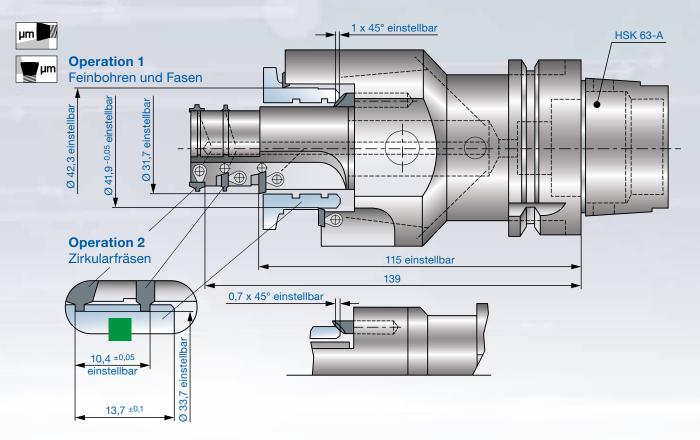
Schnittdaten

Werkstoff		(DIN) ■ 36MnVS4
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	138
Vorschub pro Zahn	mm	0,1/0,2

Ergebnis

Hohe Standmenge (es wird ca. 2x pro Standzeit nachjustiert)

Einfaches Handling durch Nachjustierung des Bearbeitungsdurchmessers direkt in der Maschinenspindel



Feinbohr-, Fas- und Zirkularfräswerkzeug Z=8 / $Z_{\rm eff.}=1$ je Ø (Feinbohren) / Z=8 / eff. 2 je Ø (Fräsen)

Mittelteil austauschbar für unterschiedliche Bauteiltypen

Alle Schneidplatten einstellbar

Anforderung

Kombinationswerkzeug zum Feinbohren, Fasen und Fräsen

Lösung

Feinbohr-, Fas- und Zirkularfräswerkzeug / Z = 8 / $Z_{\text{eff.}}$ = 1 je Ø (Feinbohren) / Z = 8 / $Z_{\text{eff.}}$ = 2 je Ø (Fräsen)

Mittelteil austauschbar für unterschiedliche Bauteiltypen

Alle Schneidplatten einstellbar

Schnittdaten

Werkstoff		(DIN) ■ GD-AlSi9Cu3
Schneidstoff		PKD
Schnittgeschwindigkeit	m/min	(Ø31,7) 750 (Ø42,3) 1000
Vorschub pro Zahn	mm	(Fräsen) 0,065 0,13
Schnitttiefe	mm	2-3

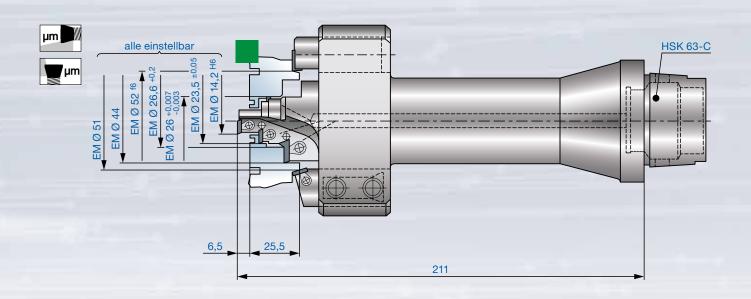
Ergebnis

Kurze Bearbeitungszeit

Hohe Maßgenauigkeit

Kundenvorteil

Geringe Kosten pro Bauteil Reduzierung der Nebenzeiten


H Getriebegehäuse

für Winkelschleifer

Feinbohr-, Fas- und Planwerkzeug / Z = 6 eff. 1 je Ø

Alle Schneidplatten einstellbar

Schneiden über KKH für unterschiedliche Gehäusetypen austauschbar

Anforderung

Kombinationswerkzeug für 6 Bearbeitungsschritte

Lösung

Feinbohr-, Fas- und Planwerkzeug / Z = 6 eff. 1 je Ø

Alle Schneidplatten einstellbar

Schneidplatten über KKH für unterschiedliche Gehäusetypen austauschbar

Schnittdaten

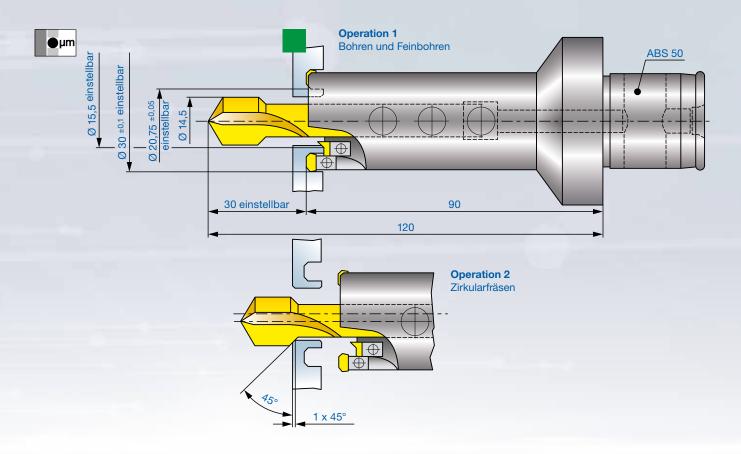
Werkstoff		(DIN) ■ GD-AlSi9Cu3
Schneidstoff		PKD
Schnittgeschwindigkeit	m/min	800
Vorschub pro Zahn	mm	-0,15
Schnitttiefe	mm	0,5

Ergebnis

Kurze Bearbeitungszeit

Hohe Maßgenauigkeit

Kundenvorteil


Geringe Kosten pro Bauteil Reduzierung der Nebenzeiten

Getriebegehäuse H

Vollbohr- und Feinbohrwerkzeug

Schneidplatten einstellbar

Anforderung

Kombinationswerkzeug für 5 Bearbeitungsschritte

Durchmesser der Fase und des Planeinstiches einstellbar

Lösung

Vollbohr- und Feinbohrwerkzeug

Schneidplatten einstellbar

Schnittdaten

Werkstoff		(DIN) ■ AISi12	
Schneidstoff		HM-beschichtet	
		Bohren und Fasen	Feinbohren und Fasen
Schnittgeschwindigkeit	m/min	(Ø 14,5) 160	(Ø30) 331
Vorschub pro Zahn	mm	0,15	0,07
Schnitttiefe	mm	7,25	4,9

Ergebnis

Kurze Bearbeitungszeit

Hohe Maßgenauigkeit

Kundenvorteil

Geringe Kosten pro Bauteil Geringe Nebenzeiten

H Hydraulikindustrie

Hydraulikkomponente

Bohr- und Feinbohrwerkzeug

Anforderung

Bohr-, Fas- und Feinbohrbearbeitung in einem Werkzeug

Lösund

Bohr- und Feinbohrwerkzeug

Schnittdaten

Werkstoff		(DIN) ■ AI		
Schneidstoff		K10		
		Bohren	Feinbohren	
Schnittgeschwindigkeit	m/min	374	374	
Vorschub pro Zahn	mm	0,38	0,09	
Schnitttiefe	mm	ins Volle	1,3	

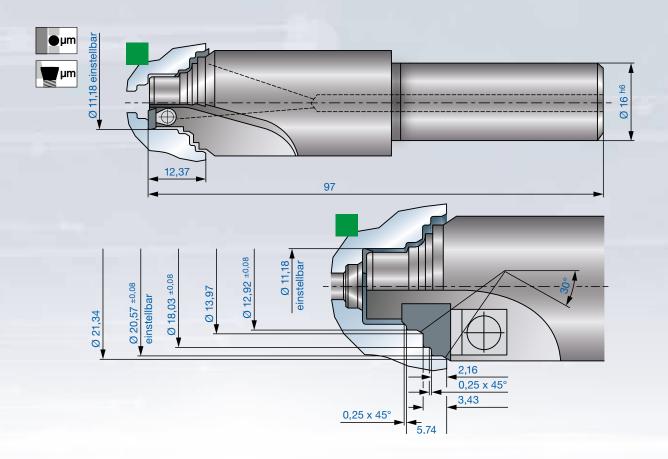
Ergebnis

Kurze Bearbeitungszeit

Hohe Maßgenauigkeit

Vollhartmetallbohrer mehrfach nachschleifbar

Kundenvorteil


Geringe Kosten pro Bauteil Geringe Nebenzeiten

Hydraulikindustrie H

Anschlussbohrungen

Feinbohr- und Faswerkzeug mit Wechselschneidplatten

PKD-Formplatten mit 5 Stufen, alle Durchmesser einstellbar

Anforderung

Stufen-Feinbohrwerkzeug für Hydraulikanschluss

Lösung

Feinbohr- und Faswerkzeug mit Wechselschneidplatten

PKD-Formplatten mit 5 Stufen, alle Durchmesser einstellbar

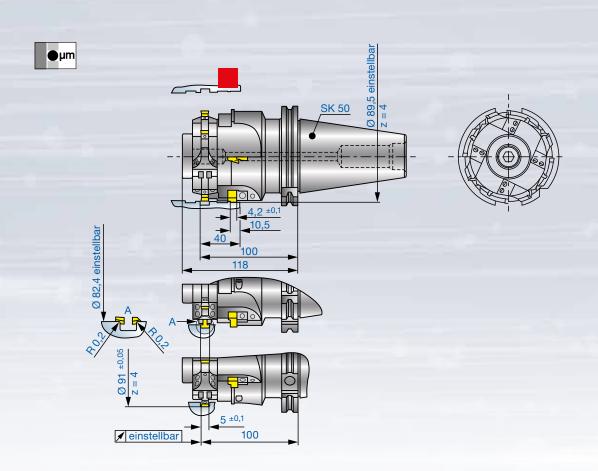
Schnittdaten

Werkstoff		(DIN) ■ GDAISi9
Schneidstoff		PKD
Schnittgeschwindigkeit	m/min	(Ø21,34) 700
Vorschub pro Zahn	mm	0,1
Schnitttiefe	mm	-5

Ergebnis

Einfaches Korrigieren der Durchmesser durch Kegelschrauben- bzw. Exzenterverstellung

Schneidplatten separat austauschbar


Kundenvorteil

Geringe Kosten pro Bauteil

H Bremskomponente

für Windkraftanlage

Zirkularfräser / Z = 16 / $Z_{eff.} = 4$

Anforderung

Stufenzirkularfräser zum Bearbeiten der Nuten

Lösung

Zirkularfräser / Z = 16 / Z_{eff.} = 4

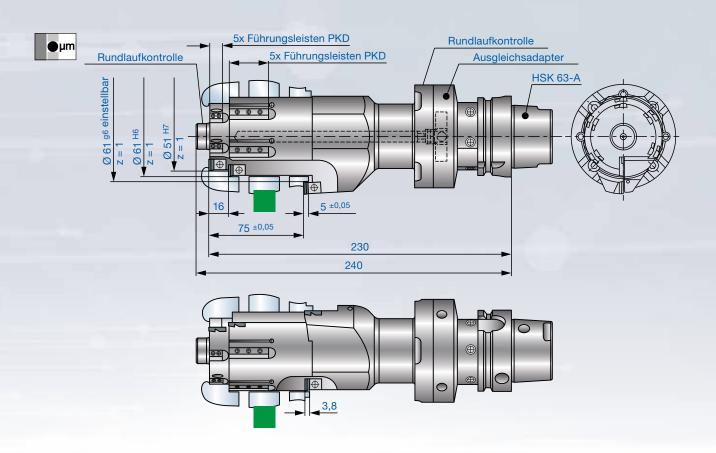
Schnittdaten

Werkstoff		(DIN) ■ GGG40
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	95
Vorschub pro Zahn	mm	0,11
Schnitttiefe	mm	4

Ergebnis

Kurze Bearbeitungszeit

Hohe Maßgenauigkeit


Kundenvorteil

Geringe Kosten pro Bauteil Reduzierung der Nebenzeiten

Gehäuse

Stufen-Feinbohrwerkzeug mit geklemmten PKD-Führungsleisten / $Z = 4 / Z_{eff.} = 1$

Alle Schneidplatten einstellbar

Anforderung

Stufen-Feinbohrwerkzeug

Lösung

Stufen-Feinbohrwerkzeug mit geklemmten PKD-Führungsleisten / Z = 4 / $Z_{eff.} = 1$

Alle Schneidplatten einstellbar

Schnittdaten

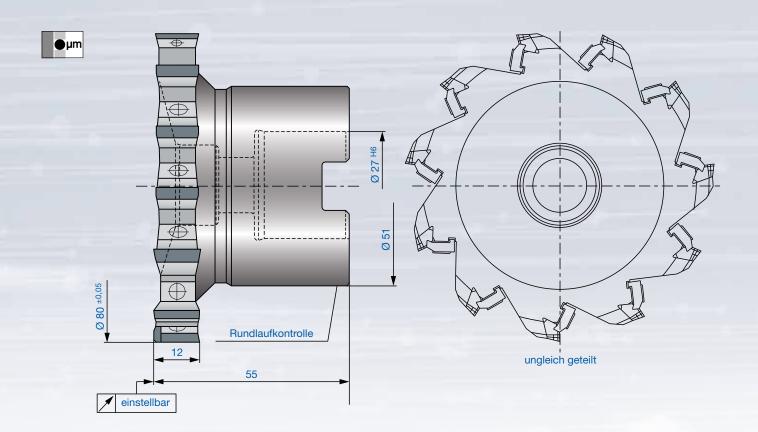
	(DIN) ■ AlSi11Cu2(Fe)
	PKD
m/min	600
mm	0,1
mm	0,2
	mm

Ergebnis

Hervorragende Oberflächengüte

Einfaches Werkzeughandling

Kundenvorteil


Hohe Prozesssicherheit

Geringe Kosten zum eventuellen Tausch der PKD-Führungsleisten

H Verdichtergehäuse

Aufsteckfräser Ø80 mm / Z = 8 + 3

Mischbestückung: Vorschneider (Z = 8) und Fertigschneider (Z = 3)

Anforderung

Oberflächengüte R_z max. $20\,\mu m$

Ebenheit 0,05 mm

Lösung

Aufsteckfräser Ø80 mm / Z = 8 + 3

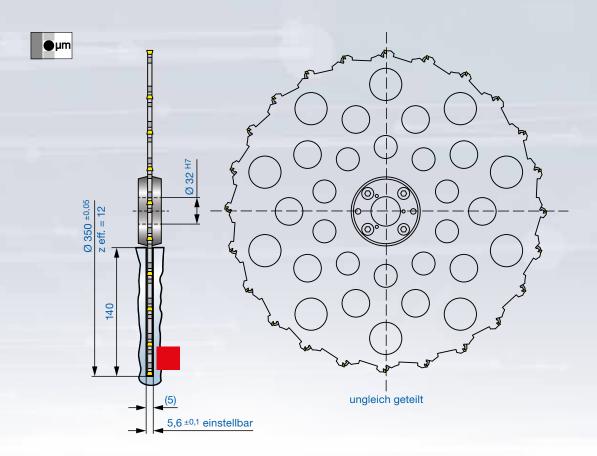
Mischbestückung: Vorschneider (Z = 8) und Fertigschneider (Z = 3)

Schnittdaten

Werkstoff		(DIN) ■ GG25
Schneidstoff		CBN
Schnittgeschwindigkeit	m/min	1.200
Vorschub pro Zahn	mm	0,140
Schnitttiefe	mm	0,10

Ergebnis

Erhöhung der Standzeit um $300-400\,\%$


Kundenvorteil

Drastische Senkung der Kosten pro Bauteil

Rotor für Turbine

Scheibenfräser Ø350 mm / Z = 12 + 12

Breite 5,6 mm einstellbar

Anforderung

Fräsen der Rotornuten

Lösung

Scheibenfräser Ø350 mm / Z = 12 + 12

Breite 5,6 mm einstellbar

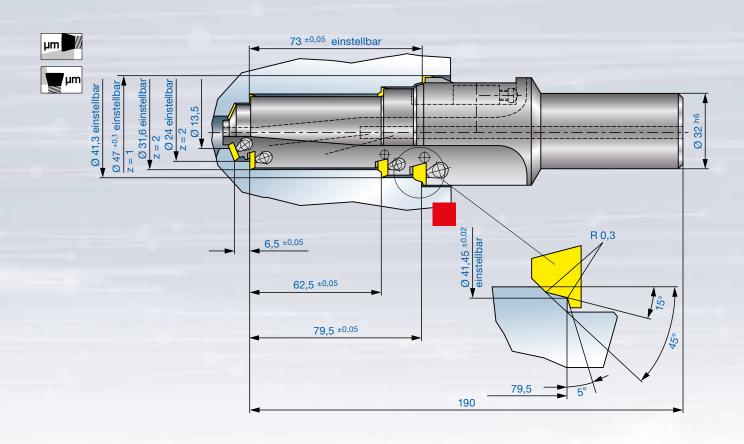
Schnittdaten

Werkstoff		(DIN) ■ GGG50
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	80
Vorschub pro Zahn	mm	0,05
Schnitttiefe	mm	140

Ergebnis

Fertigbearbeitung der Nuten in einem Schnitt -

dadurch drastische Verkürzung der Bearbeitungszeit im Vergleich zum Schleifprozess


Kundenvorteil

Deutliche Reduzierung der Kosten pro Bauteil

H Hydraulikindustrie

Anschlussbohrungen Ventilblock

Stufen-Feinbohrwerkzeug mit einstellbaren Schneidplatten / $Z = 8 / Z_{eff.} = 2$

Anforderung

Werkzeug für Hydraulikanschluss

Alle Durchmesser einstellbar

Lösung

Stufen-Feinbohrwerkzeug mit einstellbaren Schneidplatten / Z = 8 / Z_{eff.} = 2

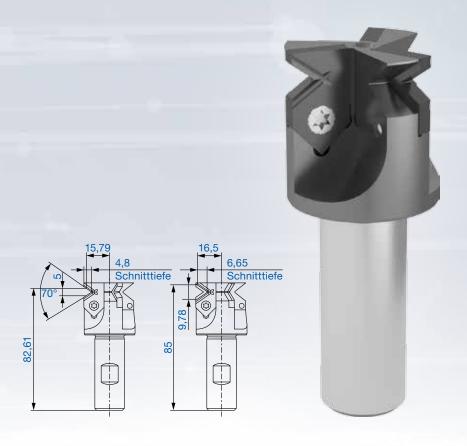
Schnittdaten

Werkstoff		(DIN) ■ GGG50
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	(Ø 47) 180
Vorschub pro Zahn	mm	(Ø47/Ø41) 0,1
Schnitttiefe	mm	-5

Ergebnis

Kurze Bearbeitungszeit

Stabiler Bearbeitungsprozess



Kundenvorteil

Geringe Kosten pro Bauteil

Fräswerkzeug mit festem Plattensitz / Z = 3

Bearbeitung unterschiedlicher Baugrößen mit einem Grundkörper und verschiedenen Wechselplatten

Anforderung

Geometrische Formgenauigkeit

Mischbearbeitung Stahl ungehärtet / gehärtet

Schnellere Bearbeitung

Lösung

Fräswerkzeug mit festem Plattensitz / Z = 3

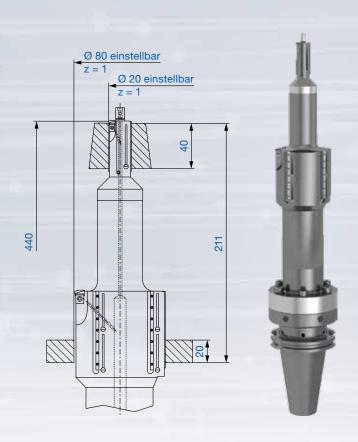
Schnittdaten

Werkstoff		(DIN) Toolox 33
Schneidstoff		CBN/HM
Schnittgeschwindigkeit	m/min	CBN 250/HM 140
Vorschub pro Zahn	mm	CBN 0,03/HM 0,03
Schnitttiefe	mm	4,8 bzw. 6,65

Ergebnis

Höhere Oberflächenqualität

Geringere Werkzeugkosten



Kundenvorteil

Taktzeitreduzierung bei höherer Oberflächenqualität Nur ein Werkzeug für verschiedene Werkstückgeometrien erforderlich Geringere Werkzeugkosten

H Getriebegehäuse

Senkwerkzeug mit Führungsleisten / Z = 1 + 1

Anforderung

Fertigung von Passdurchmessern

Hohe Oberflächenqualität

Lösung

Senkwerkzeug mit Führungsleisten / Z = 1 + 1

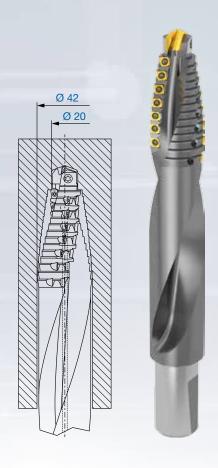
Schnittdaten

Schneidstoff HM-beschichtet Schnittgeschwindigkeit m/min 88 Vorschub pro Zahn mm 0,075	Werkstoff		(DIN) ■ GG25
Vorschub pro Zahn mm 0,075	Schneidstoff		HM-beschichtet
	Schnittgeschwindigkeit	m/min	88
Cabaittiafa and 0.0	Vorschub pro Zahn	mm	0,075
Schnittleie mm 0,2	Schnitttiefe	mm	0,2

Ergebnis

Sehr gute Koaxialität trotz der lang zu überbrückenden Strecke

Durchmesser µm-genau einstellbar


Kundenvorteil

Reduzierung der Anzahl der Werkzeuge

Hohe Standzeit

Aufbohrwerkzeug

Bohr-/Senkwerkzeug (HT 800 + 14 Stufen) / Z = 16

Anforderung

	Er	hö	hung	der	Prozesss	ic	her	hei	t
--	----	----	------	-----	----------	----	-----	-----	---

Lösung

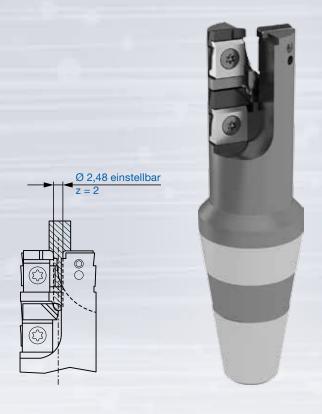
Bohr-/Senkwerkzeug (HT 800 + 14 Stufen) / Z = 16

Schnittdaten

Schnittdaten		
Werkstoff		(DIN) ■ GGG40
Schneidstoff		HM
Schnittgeschwindigkeit	m/min	120
Vorschub pro Zahn	mm	0,4
Schnitttiefe	mm	ins Volle

Ergebnis

Schnellere Bearbeitungszeit



Kundenvorteil

Hohe Prozesssicherheit Höhere Standzeit

H Steckerkontakt

Feinbohrwerkzeug mit einstellbaren Formschneidplatten Z = 2 + 1

Anforderung

Alternativlösung zu einem geschliffenen HM-Werkzeug

Lösung

Feinbohrwerkzeug mit einstellbaren Formschneidplatten / Z = 2 + 1

Schnittdaten

Werkstoff		(DIN) ■ CuZn39Pb3R500
Schneidstoff		HM-unbeschichtet
Schnittgeschwindigkeit	m/min	76
Vorschub pro Zahn	mm	0,065
Schnitttiefe	mm	ins Volle

Ergebnis


Standmenge: 1.000.000 Steckerkontakte µm-genaue Einstellung der Durchmesser

Kundenvorteil

Kein Nachschleifen des gesamten Werkzeuges nötig Verringerung der Lagerhaltungskosten

GA200 Vario Sonderausführung (Schrupp-/Schlichtkombination) Z = 1 + 1

Anforderung

Reduzierung der Bearbeitungszeit

Lösung

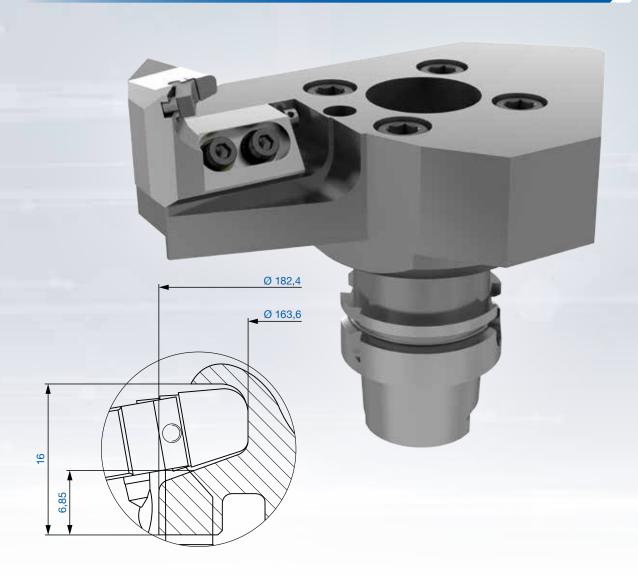
GA200 Vario Sonderausführung (Schrupp-/Schlichtkombination) Z = 1 + 1

Schnittdaten

Werkstoff		(DIN) ■ CuZn35Pb2Al
Schneidstoff		HM/PKD
Schnittgeschwindigkeit	m/min	300
Vorschub pro Zahn	mm	0,06
Schnitttiefe	mm	4

Ergebnis

Reduzierung der benötigten Werkzeuge von 2 auf 1



Kundenvorteil

Taktzeitreduzierung bei gleichbleibender Qualität Geringere Werkzeugkosten

Interpolations-Drehwerkzeug / Z = 1

Anforderung

Erzeugung einer V-Kontur trotz begrenzter Platzverhältnisse

Lösung

Interpolations-Drehwerkzeug / Z = 1

Schnittdaten

Ochilittaaten		
Werkstoff		(DIN) ■ GX40NiCrSiNb38-19
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	100
Vorschub pro Zahn	mm	0,1
Erachnia		

Ergebnis

Sehr kurze Bearbeitungszeit

Flexibles und stabiles Werkzeugkonzept mit Kurzklemmhalter

Gute Standzeit

H Turboladergehäuse

Vorbearbeitung

Stufensenkwerkzeug

Diverse Schneidplatten einstellbar

Anforderung

Mehrere Bearbeitungsschritte in einem Werkzeug

Lösung

Stufensenkwerkzeug

Diverse Schneidplatten einstellbar

Schnittdaten

ocimittuaten		
Werkstoff		(DIN) ■ GX40NiCrSiNb38-19
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	95
Vorschub pro Zahn	mm	0,1

Ergebnis

Sehr kurze Bearbeitungszeit durch maximal mögliche Zähnezahl

Zusammenfassen mehrerer Bearbeitungsschritte aufgrund der

durchdachten Aufteilung der Spanräume möglich

Kundenvorteil

Niedrigere Werkzeugkosten durch Einsatz von ISO-Schneidplatten Reduzierung der Taktzeit

Turboladergehäuse H

Fertigbearbeitung

Feinbohrwerkzeug / Z = 1 + 1

Einstellung der Durchmesser durch Feinstverstellung

Smart Setting Motion Tools

Anforderung

Stufenwerkzeug zur Finishbearbeitung

Lösung

Senkwerkzeug / Z = 1 + 1

Einstellung der Durchmesser durch Gewindekeilverstellung

Schnittdaten

Werkstoff		(DIN) GX40NiCrSiNb38-19
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	120
Vorschub pro Zahn	mm	0,075

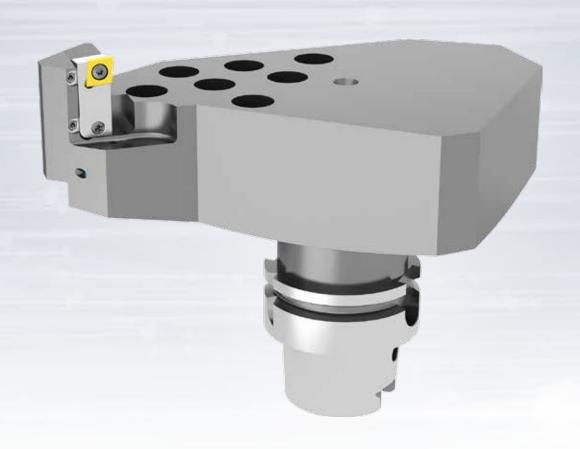
Ergebnis

Kurze Bearbeitungszeit

Kundenvorteil

Niedrigere Werkzeugkosten durch Einsatz von ISO-Schneidplatten µm-genaues Nachstellen direkt an der Spindel → geringer Maschinenstillstand

H Turboladergehäuse


Fertigbearbeitung

Senkwerkzeug und Interpolationswerkzeug in einem Ø 182,4 mm

→ Feinbearbeitung

Planfläche von 182,4 auf 155,698 mm

→ Interpolationsprozess

Anforderung

Verschiedene Bearbeitungsprozesse in einem Werkzeug

Lösung

Senkwerkzeug und Interpolationswerkzeug in einem Ø 182,4 mm \rightarrow Feinbearbeitung

Planfläche von 182,4 auf 155,698 mm → Interpolationsprozess

Schnittdaten

Werkstoff		(DIN) ■ GX40NiCrSiNb38-19
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	100
Vorschub pro Zahn	mm	0,1

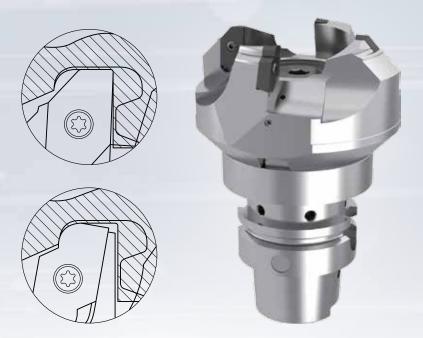
Ergebnis

2 Bearbeitungsprozesse in einem Werkzeug

Einstellung des Durchmessers durch Gewindekeilverstellung

Kundenvorteil

Niedrigere Werkzeugkosten durch Einsatz von ISO-Schneidplatten


Turboladergehäuse H

Vorbearbeitung

Axial-Stechwerkzeug / Z = 2 + 2

Aufteilung der Kontur auf zwei verschiedene Schneidplattengeometrien

Kompaktes Werkzeugkonzept

Anforderung

Vorbearbeitung einer komplexen Kontur

Lösung

Axial-Stechwerkzeug / Z = 2 + 2

Aufteilung der Kontur auf zwei verschiedene Schneidplattengeometrien

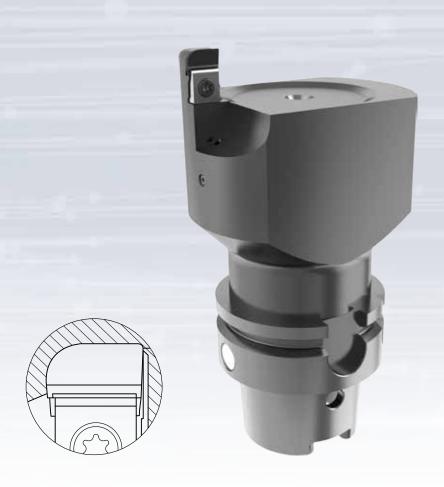
Kompaktes Werkzeugkonzept

Schnittdaten

Werkstoff		(DIN) ■ GX40NiCrSiNb38-19
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	110
Vorschub pro Zahn	mm	0,125
Europhysia		

Ergebnis

Einfaches Werkzeughandling


Kundenvorteil

Geringe Kosten pro Bauteil durch mehrschneidige Schneidplatte

H Turboladergehäuse

Fertigbearbeitung

Axial-Stechwerkzeug mit Formplatte / Z = 1

Anforderung

Fertigbearbeitung einer komplexen Kontur

_ösung

Axial-Stechwerkzeug mit Formplatte / Z = 1

Schnittdaten

Werkstoff		(DIN) GX40NiCrSiNb38-19
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	100
Vorschub pro Zahn	mm	0,1

Ergebnis

Sehr gute Oberflächenqualität und Maßhaltigkeit

µm-genaue Einstellbarkeit des Durchmessers

Kundenvorteil

Geringe Kosten pro Bauteil

Turboladergehäuse H

Vorbearbeitung

Axial-Stechwerkzeug, Durchmesser einstellbar / Z = 1 + 1

Aufteilung der Kontur auf zwei verschiedene Schneidplatten

Kompaktes Werkzeugkonzept

Anforderung

Vorbearbeitung einer komplexen Kontur

Lösung

Axial-Stechwerkzeug, Durchmesser einstellbar / Z = 1 + 1

Aufteilung der Kontur auf zwei verschiedene Schneidplatten

Kompaktes Werkzeugkonzept

Schnittdaten

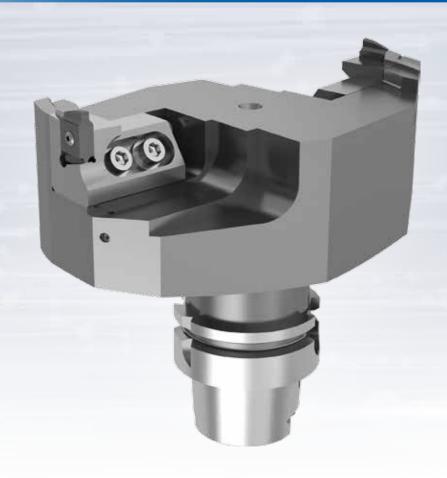
Werkstoff		(DIN) ■ GX40NiCrSiNb38-19
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	95
Vorschub pro Zahn	mm	0,09
Fraebnis		

Einfaches Werkzeughandling

Schneidplatten µm-genau einstellbar

Kundenvorteil

Geringe Kosten pro Bauteil durch hohe Standzeit


H Turboladergehäuse

Vorbearbeitung

Axial-Stechwerkzeug, Durchmesser einstellbar / Z = 1 + 1

Aufteilung der Kontur auf zwei verschiedene Schneidplatten

Kompaktes Werkzeugkonzept mit Kurzklemmhaltern

Anforderung

Vorbearbeitung einer komplexen Kontur

Lösung

Axial-Stechwerkzeug, Durchmesser einstellbar / Z = 1 + 1

Aufteilung der Kontur auf zwei verschiedene Schneidplatten

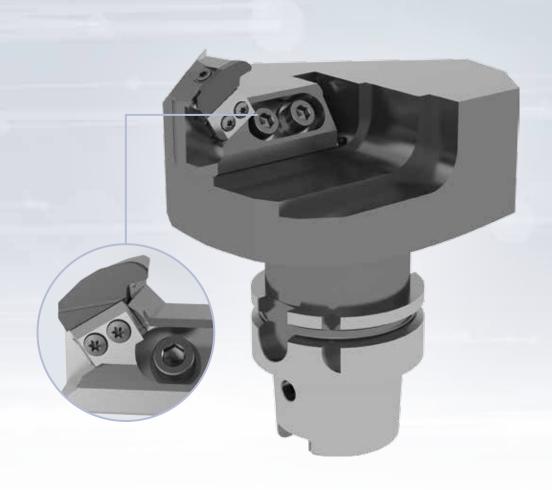
Kompaktes Werkzeugkonzept mit Kurzklemmhaltern

Schnittdaten

Werkstoff		(DIN) ■ GX40NiCrSiNb38-19
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	110
Vorschub pro Zahn	mm	0,15
Erachnia		

Ergebnis

Einfaches Werkzeughandling



Kundenvorteil

Geringe Kosten pro Bauteil durch mehrschneidige Schneidplatte

V-Band

Interpolations-Drehwerkzeug / Z = 1

Anforderung

Erzeugung einer V-Kontur trotz begrenzter Platzverhältnisse

Lösung

Interpolations-Drehwerkzeug / Z = 1

Schnittdaten

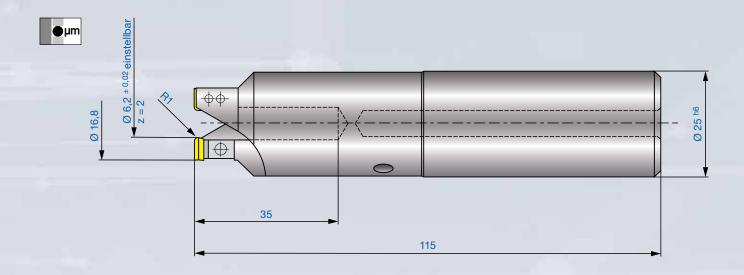
Oominttaaton		
Werkstoff		(DIN) GX40NiCrSiNb38-19
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	110
Vorschub pro Zahn	mm	0,15
Eugabaia		

Ergebnis

Sehr kurze Bearbeitungszeit

Flexibles und stabiles Werkzeugkonzept mit Kurzklemmhalter

Gute Standzeit


Kundenvorteil

Geringe Kosten pro Bauteil

Axial-Stechwerkzeug / Z = 2

Anforderung

Bearbeitung von verschiedenen Außendurchmessern

mit hoher Anforderung an Durchmessertoleranz und Rundheit

Reduzierung der Bearbeitungszeit

Lösung

Axial-Stechwerkzeug / Z = 2

Schnittdaten

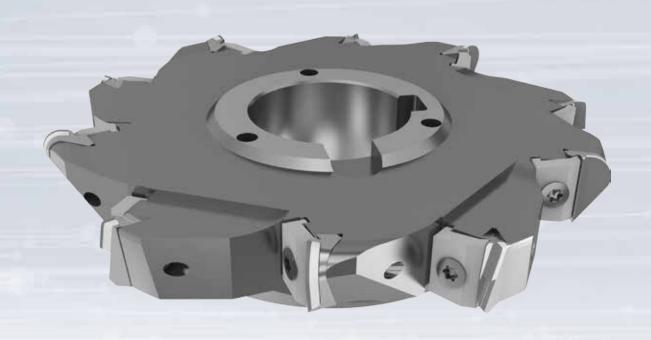
Werkstoff		(DIN) TiAl6V4
Schneidstoff		HM
Schnittgeschwindigkeit	m/min	48
Vorschub pro Zahn	mm	0,03
Vorschub pro Zahn	mm	0,25

Ergebnis

Deutlich kürzere Bearbeitungszeit durch zweischneidiges Werkzeug

Gleichmäßige Verteilung der Schnittkräfte im Vergleich zu einem einschneidigen Werkzeug -

dadurch sehr hohe Rundheit und gleichmäßige Wandstärke



Kundenvorteil

Hohe Prozesssicherheit

H Flugzeugflügel

Scheibenfräser mit Schnittaufteilung $Z = 10 / Z_{eff.} = 5$

Anforderung

Erhöhung der Prozesssicherheit

Reduzierung der Delamination bei sogenanntem "Mesh-Material"

_ösung

Scheibenfräser mit Schnittaufteilung $Z = 10 / Z_{eff} = 5$

Schnittdaten

Werkstoff		(DIN) ■ Komposit/CFK
Schneidstoff		PKD
Schnittgeschwindigkeit	m/min	370
Vorschub pro Zahn	mm	0,08
Schnittbreite	mm	0

Ergebnis

Erhöhung der Standmenge

Kundenvorteil

Höhere Qualität, dadurch niedrigere Kosten für Nachbearbeitung

Flugzeugkomponente H

Bohr-/Senkkombination (Hydrodehnspannfutter mit Formplatte) Z = 1

Schneidplatte im Durchmesser µm-genau einstellbar

Anforderung

Bearbeitung von Nietlochbohrungen

Gratfreier Übergang von der Bohrung zur Fase

Bohr-/Senkkombination (Hydrodehnspannfutter mit Formplatten) Z = 1

Schneidplatte im Durchmesser µm-genau einstellbar

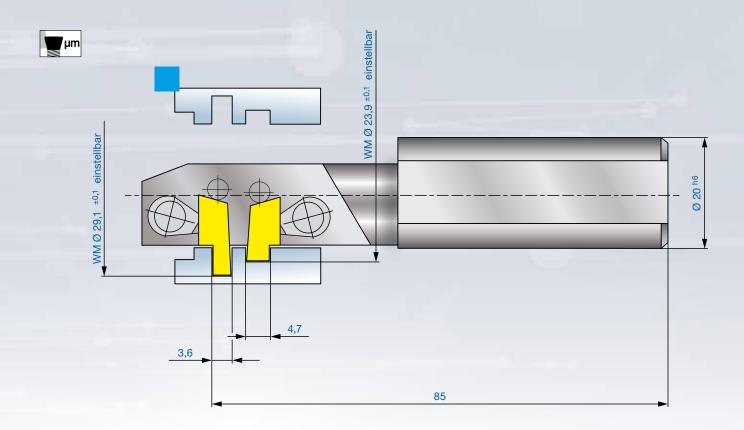
Schnittdaten

Werkstoff		(DIN) CFK/Titan
Schneidstoff		PKD
Schnittgeschwindigkeit	m/min	380
Vorschub pro Zahn	mm	0,11
Schnitttiefe	mm	ins Volle

Ergebnis

Hohe Qualität der Fase bzw. des Übergangs durch PKD-Schneidplatte

Hohe Rundlaufgenauigkeit des VHM-Bohrers


Kundenvorteil

Hohe Prozesssicherheit Geringe Kosten pro Bauteil

Stechwerkzeug für Drehmaschine / $Z = 2 / Z_{eff.} = 1$

Einstechplatten zueinander einstellbar

Anforderung

Enge Toleranzen der Einstiche zueinander

Reduzierung der Bearbeitungszeit

Lösung

Stechwerkzeug für Drehmaschine / Z = 2 / Z_{eff.} = 1

Einstechplatten zueinander einstellbar

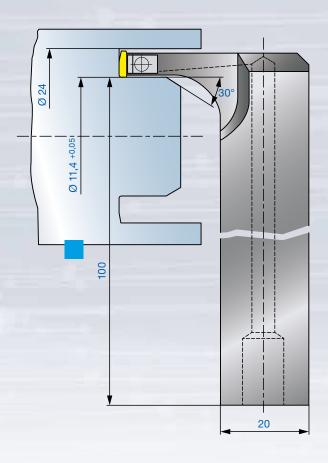
Schnittdaten

Werkstoff		(DIN) ■ Sind D 11 (Sintermetall)
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	(Ø 29,1) 220
Vorschub pro Zahn	mm	0,1
Schnitttiefe	mm	~ 4,5

Ergebnis

Kurze Bearbeitungszeit durch Kombinationswerkzeug

Kundenvorteil


Geringe Kosten pro Bauteil

Reduzierung der Nebenzeiten durch einfaches Werkzeughandling

H Drehwerkzeuge

Mantel

Stechwerkzeug / Z = 1

Anforderung

Fertigdrehen Fase 30° und Ø11,4+0,05

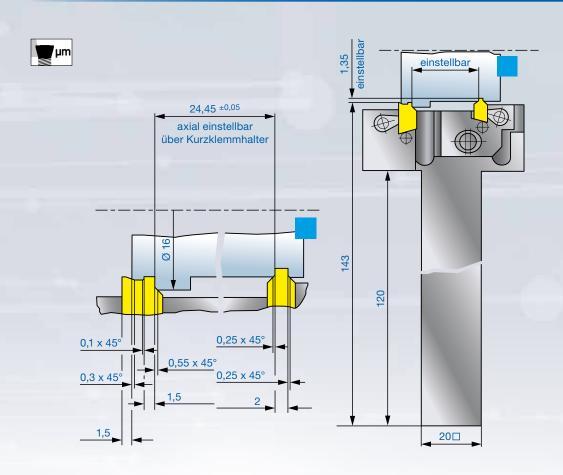
Lösung

Stechwerkzeug / Z = 1

Schnittdaten

Werkstoff		(DIN) ■ 9SMn28K
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	(Ø 11,4) 95
Vorschub pro Zahn	mm	0,12
Schnitttiefe	mm	-1
Eventurio		

Ergebnis


Hohe Maßgenauigkeit durch präzisionsgeschliffene Schneidplatte

Kundenvorteil

Hohe Prozesssicherheit durch stabile Schneidplattenspannung

Stechwerkzeug / Z = 2 / Z_{eff.} = 1

Anforderung

Stechdrehen - Profileinstich

Einstich zueinander einstellbar

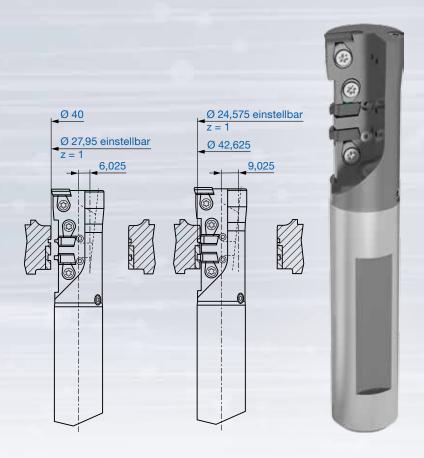
Lösung

Stechwerkzeug / Z = 2 / Z_{eff.} = 1

Schnittdaten

Werkstoff		(DIN) ■ 9SMn28K
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	120
Vorschub pro Zahn	mm	0,1
Schnitttiefe	mm	2

Ergebnis


Komplettbearbeitung mit einem Werkzeug

H Drehwerkzeuge

Lagerschild

Kombi-Drehwerkzeug (Schlichten/Einstechen) / $Z = 3 / Z_{eff.} = 1 + 1$

Anforderung

Reduzierung der Taktzeit

Lösung

Kombi-Drehwerkzeug (Einstechen/Schlichten) / $Z = 3 / Z_{eff.} = 1 + 1$

Schnittdaten

•••••				
Werkstoff (DIN) ■ AlSi12Cu1(Fe) EN-AC47100/11SMn3		u1(Fe) EN-AC47100/11SMn30+C1.0715		
Schneidstoff		HM-beschichtet/ unbeschichtet		
		Einstechen	Schlichten	
Schnittgeschwindigkeit	m/min	240	320	
Vorschub pro Zahn	mm	0,12	0,1	
Evento				

Ergebnis

Kürzere Bearbeitungszeit

Kundenvorteil

Einsparung von Werkzeugplätzen auf Werkzeugrevolver

Schäl-Drehhalter / Z = 1

Anforderung

Sehr hohe Oberflächengüte

Reduzierung der Bearbeitungszeit

Lösung

Schäl-Drehhalter / Z = 1

Schnittdaten

Werkstoff		(DIN) ■ Stahl
Schneidstoff		HM-beschichtet
Schnittgeschwindigkeit	m/min	225
Vorschub pro Zahn	mm	1,5
Schnitttiefe	mm	0,4
Fraehnis		

Ergebnis

Sehr schnelle Bearbeitungszeit

Sehr hohe Oberflächengüte

Kundenvorteil

Taktzeitreduzierung

Bis zu 10x schneller als konventionelles Drehen

Einsparung eines Arbeitsschrittes (Schleifen)

für kundenspezifische Werkzeuge

Kunde		Datum	
Kontaktperson		Telefon	
Straße		Fax	
Postleitzahl/Ort		E-Mail	
Werkstück		Zeichnungsnummer	
Werkstoff			
Bearbeitung ins	Volle	vorgegossen	vorgebohrt
☐ Sa	ckloch	Durchgangsbohrung	
☐ gla	tter Schnitt	unterbrochener Schnitt	stark unterbrochener Schnitt
☐ So	nstiges		
Gewünschte Oberfläche	ngiito B -	R ₂ =	Andere
dewurischte Obernache	ngute ita –		Alluele
Aufmaß	_ mm	im Durchmesser $a_p = $	a _e =
Vorrichtung st	tabil 🗌 labil 📗 se	ehr labil	
Störkontur	ein 🗌 ja	mm	
Masshins DAZ	□ Transferratus0s □ Du	aharaaahiaa	Debutent Descharing delice
Maschine BAZ	☐ Transferstraße ☐ Dre	ehmaschine Dreh-/Fräsmaschine	☐ Bohrkopf ☐ mehrspindelig
Spindel Steilkegel	DIN	Größe	50
HSK	DIN	Größe 🗌 32 🔲 40 🔲 50 🔲	63 🗌 80 🔲 100
Andere		Innenkühlung 🗌 ja	nein
max. Dreh	nzahl	Antriebsleistung	kW
Werkzeug	sschneidend 🗌 linksschneider	nd stehend	rotierend
☐ Plan-/	Eckfräser Nutenfräser/S	chaftfräser	riebsleistung
Schaftausführung/Form		Größe	
Werkzeug wuchten	☐ nein ☐ ja, Wuchtgü	ite G	bei 1/mi
Schnittdaten	$v_c = $ m/min	f = mm/U	☐ mm/Z ☐ mm/min
Kühlung	☐ zentral ☐ von außer	n 🗌 ohne	
	☐ Emulsion ☐ ÖI	☐ MQL ☐ trocken	
Bemerkungen			

für HPC-Sonderfräser

	sfüllen und faxen an: +49 (0) 911 / 64 19 de. Eine Online-Anfrage finden Sie aucl	9 22-10 oder einscannen und per E-Mail sender n unter www.hollfelder-guehring.de	n an
Name/falls vorhanden Ki	unden-Nr.	Ansprechpartner bei Rückfragen	
Straße/Hausnummer		PLZ/Ort	
Telefon		Telefax	
Datum		Unterschrift	
Ø D	Ø D ₂		DIN 68971
Werkstück	Eingriffsbreite (a _e)	maximale Zähnezahl	
Material	IKZ (bar)	reduzierte Zähnezahl	Schruppfräser
Aufmaß (ap)	MMS 1-Kanal	max. Werkzeuggewicht	Schlichtfräser
Oberflächenanforderung R _z	MMS 1-Kanal 🗌		

für aussteuerbare Werkzeuge

		Datum	
Kontaktperson		Telefon	
Straße		Fax	
Postleitzahl/Ort		E-Mail	
Werkstück		Zeichnungsnummer	
Werkstoff		Härte/Zugfestigkeit	
Werkstückbezeichnung/3D-Modell erforderlich!			
Bearbeitung	Ausgleichswelle	Zylinderlaufbuchse	
Gewünschte Oberflächengüte R _a =	R _z =	Andere	
Aufmaß mm	im Durchmesser		
Maschine BAZ Transferstraße	☐ mehrspindlige	e Bearbeitung	
Maschinenhersteller			
Maschinentyp			
Spindel Steilkegel DIN			
		 mit Innenkühlung ohne Innenkühlung ☐ Antriebsleistung	KW
Andere Max. Drehzahl Einklappen der Schneiden erforderlich (Zugstange)?		☐ mit Innenkühlung ☐ ohne Innenkühlung	KW
Andere Max. Drehzahl Einklappen der Schneiden erforderlich (Zugstange)?	 Ja	☐ mit Innenkühlung ☐ ohne Innenkühlung ☐ Antriebsleistung	_
Andere Max. Drehzahl Einklappen der Schneiden erforderlich (Zugstange)? Hubmechanismus Ja Nein	Ja 🔲 Nein	☐ mit Innenkühlung ☐ ohne Innenkühlung ☐ Antriebsleistung	_
Andere Max. Drehzahl Einklappen der Schneiden erforderlich (Zugstange)? Hubmechanismus Ja Nein Lagerung Zwischenlager	Ja 🔲 Nein	 mit Innenkühlung ohne Innenkühlung Antriebsleistung Luft ☐ Emulsion 	_
Andere Max. Drehzahl Einklappen der Schneiden erforderlich (Zugstange)? Hubmechanismus Ja Nein Lagerung Zwischenlager	Ja □ Nein Gegenlager → Zeid linksschneidend	mit Innenkühlung ohne Innenkühlung Antriebsleistung Luft Emulsion chnung erforderlich!	_
Andere Max. Drehzahl Einklappen der Schneiden erforderlich (Zugstange)? Hubmechanismus Ja Nein Lagerung Zwischenlager Werkzeug rechtsschneidend	Ja □ Nein Gegenlager → Zeid linksschneidend	mit Innenkühlung □ ohne Innenkühlung □ Antriebsleistung □ Emulsion chnung erforderlich! □ mm/U □ mr	☐ Mechanisch
Andere Max. Drehzahl Einklappen der Schneiden erforderlich (Zugstange)? Hubmechanismus Ja Nein Lagerung Zwischenlager Werkzeug rechtsschneidend Schnittdaten (aktueller Prozess) V _c =	Ja ☐ Nein Gegenlager → Zeid linksschneidend n/min f = _	mit Innenkühlung ohne Innenkühlung Antriebsleistung Luft Emulsion chnung erforderlich! mm/U mr	☐ Mechanisch
Andere Max. Drehzahl Einklappen der Schneiden erforderlich (Zugstange)? Hubmechanismus Ja Nein Lagerung Zwischenlager Werkzeug rechtsschneidend Schnittdaten (aktueller Prozess) V _c =	Ja ☐ Nein Gegenlager → Zeid linksschneidend n/min f = _	mit Innenkühlung ohne Innenkühlung Antriebsleistung Luft Emulsion chnung erforderlich! mm/U mr	☐ Mechanisch
Andere Max. Drehzahl Einklappen der Schneiden erforderlich (Zugstange)? Hubmechanismus Ja Nein Lagerung Zwischenlager Werkzeug rechtsschneidend Schnittdaten (aktueller Prozess) V _c =	Ja ☐ Nein Gegenlager → Zeid linksschneidend n/min f = _	mit Innenkühlung ohne Innenkühlung Antriebsleistung Luft Emulsion chnung erforderlich! mm/U mr	☐ Mechanisch

In vielen Bereichen der Metallverarbeitung finden unsere innovativen Werkzeugsysteme weltweit ihre Anwendung. Sowohl die hochpräzisen und flexibel einsetzbaren Standardwerkzeuge als auch unsere innovativen kundenspezifischen Werkzeuglösungen machen uns zu einem zuverlässigen Partner in der Zerspanungsindustrie.

Mit langjähriger Erfahrung und spezifischem Know-how steigern wir Ihre Produktivität.

Fordern Sie uns, wir lösen auch Ihre Aufgabe!

Das Ergebnis ist wirtschaftlich, präzise und qualitativ hochwertig.

HOLLFELDER CUTTING TOOLS